876 resultados para Aragonite stalagmite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data show the survival data of Atlantic cod larvae from two different stocks, which were measured in two separate experiments in Kristineberg, Sweden in 2013 on the Western Baltic stock and in Tromsö, Norway in 2014 on the Barents Sea stock. Survival was measured as a response to ocean acidification, control tanks were kept at ambient CO2 concentrations. CO2 concentrations and feeding concentrations are also provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dataset contains raster grids in GeoTIFF format describing the benthic environment of South Georgia. The data include topographic layers that are directly calculated from a bathymetry grid (Slope, Aspect, Roughness, Slope, Terrain Ruggedness Index, Topographic Position Index). A benthic classification of the area is included, based on topographic layers. Also included are sea-bed environmental layers that are interpolated from global three dimensional grids (Alkalinity, Apparent Oxygen Utilisation, Omega Aragonite, Omega Calcite, Dissolved Oxygen, Nitrate, pH, Phosphate, Salinity, Silicate, Temperature, and Total CO2). These layers were used to construct a habitat suitability model for Octocorallia. The geographic extent is 43°57'56.65"W - 33°45'38.19"W and 52°47'29.50"S - 56° 9'11.03"S. The spatial resolution is 150m x 150m (except for benthic classification wihch is 450m x 450m). The map projection is EPSG:3762.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detailed structure and timing of the penultimate deglaciation are insufficiently defined yet critical for understanding mechanisms responsible for abrupt climate change. Here we present oxygen isotope records (from planktonic and benthic foraminifera) at unprecedented resolution encompassing late marine oxygen isotope stage (MIS) 6 and Termination II (ca. 150-120 ka) from the Santa Barbara Basin, supported by additional southern California margin records, a region highly sensitive to millennial-scale climate oscillations during the last deglaciation. These records reveal millennial- and centennial-scale climate variability throughout the interval, including an interstadial immediately preceding the deglaciation, a brief warm event near the beginning of Termination II, and a Bølling-Allerød-Younger Dryas-like climate oscillation midway through the deglaciation. Recognition of these events in an oxygen isotope record from a 230Th-dated stalagmite allows the adoption of this radiometric chronology for the California margin records. This chronology supports the Milankovitch theory of deglaciation. The suborbital history of climate variability during Termination II may account for records of early deglaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from anthropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes associated with ocean acidification, but the direct effects of lower pH on reef erosion has received less attention, particularly in the context of known drivers of bioerosion and natural variability. This study examines the balance between reef accretion and erosion along a well-characterized natural environmental gradient in Kane'ohe Bay, Hawai'i using experimental blocks of coral skeleton. Comparing before and after micro-computed tomography (µCT) scans to quantify net accretion and erosion, we show that, at the small spatial scale of this study (tens of meters), pH was a better predictor of the accretion-erosion balance than environmental drivers suggested by prior studies, including resource availability, temperature, distance from shore, or depth. In addition, this study highlights the fine-scale variation of pH in coastal systems and the importance of microhabitat variation for reef accretion and erosion processes. We demonstrate significant changes in both the mean and variance of pH on the order of meters, providing a local perspective on global increases in pCO2. Our findings suggest that increases in reef erosion, combined with expected decreases in calcification, will accelerate the shift of coral reefs to an erosion-dominated system in a high-CO2 world. This shift will make reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of the ecosystem services that coral reefs provide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To reconstruct Recent and past sedimentary environments, marine sediments of Upper Pleistocene and Holocene ages from the eastern Arctic Ocean and especially from the Nansen-Gakkel Ridge (NGR) were investigated by means of radioisotopic, geochemical and sedimentological methods. In combination with mass physical property data and lithological analysis these investigations allow clearly to characterize the depositional environments. Age dating by using the radioisotope 230Th gives evidence that the investigated sediments from the NGR are younger than 250,000 years. Identical lithological sediment sequences within and between sediment cores from the NGR can be related to sedimentary processes which are clearly controlled by palaeoclimate. The sediments consist predominantly of siliciclastic, terrigenous ice-rafted detritus (IRD) deriving from assorted and redeposited sediments from the Siberian shelfs. By their geochemical composition the sediments are similar to mudstone, graywacke and arcose. Sea-ice as well as icebergs play a major roll in marine arctic sedimentation. In the NGR area rapid change in sedimentary conditions can be detected 128,000 years ago. This was due to drastic change in the kind of ice cover, resulting from rapid climatic change within only hundreds of years. So icebergs, deriving mostly from Siberian shelfs, vanished and sea-ice became dominant in the eastern Arctic Ocean. At least three short-period retreats of the shelf ice between 186,000 and 128,000 years are responsible for the change of coarse to fine-grained sediments in the NGR area. These warmer stages lasted between 1,000 and 3,000 years. By monitoring and comparing the distribution patterns of sedimentologic, mass physical and geochemical properties with 230Th ex activity distribution patterns in the sediment cores from the NGR, there is clear evidence that sediment dilution is responsible for high 230Th ex activity variations. Thus sedimentation rate is the controlling factor of 230Th ex activity variations. The 230Th flux density in sediments from the NGR seems to be highly dependent On topographic Position. The distribution patterns of chemical elements in sediment cores are in general governed by lithology. The derivation of a method for dry bulk density determination gave the opportunity to establish a high resolution stratigraphy on sediment cores from the eastern Arctic Ocean, based on 230Thex activity analyses. For the first time sedimentation and accumulation rates were determined for recent sediments in the eastern Arctic Ocean by 230Th ex analyses. Bulk accumulation rates are highly variable in space and time, ranging between 0.2 and 30 g/cm**2/ka. In the sediments from the NGR highly variable accumulation rates are related to the kind of ice cover. There is evidence for hydrothermal input into the sediments of the NGR. Hydrothermal activity probably also influences surficial sediments in the Sofia Basin. High contents of As are typical for surficial sediments from the NGR. In particular SL 370-20 from the bottom of the rift valley has As contents exceeding in parts 300 ppm. Hydrothermal activity can be traced back to at least 130,000 years. Recent to subrecent tectonic activity is documented by the rock debris in KAL 370 from the NGR. In four other sediment cores from the NGR rift valley area tectonically induced movements can be dated to about 130,000 years ago, related most probably to the rapid climate change. Processes of early diagenesis in sediments from the NGR caused the aobilization and redeposition of Fe, Mn and Mo. These diagenetic processes probably took place during the last 130,000 years. In sediment cores from the NGR high amounts of kaolinite are related to coarse grained siliciclastic material, probably indicating reworking and redeposition of siberian sandstones with kaolinitic binding material. In contrast to kaolinite, illite is correlated to total clay and 232Th contents. Aragonite, associated with serpentinites in the rift valley area of the NGR, was precipitated under cold bottom-water conditions. Preliminary data result in a time of formation about 60 - 80 ka ago. Manganese precipitates with high Ni contents, which can be related to the ultrabasic rocks, are of similar age.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Holocene laminated sediments from a core transect centred in the oxygen minimum zone (OMZ) impinging at the continental slope off Pakistan indicate stable oxygen minimum conditions for the past 7000 calendar years. High SW-monsoon-controlled biological productivity and enhanced organic matter preservation during this period is reflected in high contents of total organic carbon (TOC) and redox-sensitive elements (Ni, V), as well as by a low-diversity, high-abundance benthic foraminiferal Buliminacea association and high abundance of the planktonic species Globigerina bulloides indicative of upwelling conditions. Surface-water productivity was strongest during SW monsoon maxima. Stable OMZ conditions (reflected by laminated sediments) were found also during warm interstadial events (Preboreal, Bølling-Allerød, and Dansgaard-Oeschger events), as well as during peak glacial times (17-22.5 ka, all ages in calendar years). Sediment mass accumulation rates were at a maximum during the Preboreal and Younger Dryas periods due to strong riverine input and mobilisation of fine-grained sediment coinciding with rapid deglacial sea-level rise, whereas eolian input generally decreased from glacial to interglacial times. In contrast, the occurrence of bioturbated intervals from 7 to 10.5 ka (early Holocene), in the Younger Dryas (11.7-13 ka), from 15 to 17 ka (Heinrich event 1) and from 22.5 to 25 ka (Heinrich event 2) suggests completely different conditions of oxygen-rich bottom waters, extremely low mass and organic carbon accumulation rates, a high-diversity benthic fauna, all indicating lowered surface-water productivity. During these intervals the OMZ was very poorly developed or absent and a sharp fall of the aragonite compensation depth favoured the preservation of pteropods. The abundance of lithogenic proxies suggests aridity and wind transport by northwesterly or northeasterly winds during these periods coinciding with the North Atlantic Heinrich events and dust peaks in the Tibetan Loess records. The correlation of the monsoon-driven OMZ variability in the Arabian Sea with the rapid climatic fluctuations in the high northern latitudes suggests a close coupling between the climates of the high and low latitudes at a global scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifteen surface sediment samples from the Pakistan shelf and upper continental slope and a Late Quaternary high-sedimentation rate core (573 m water depth, Pakistan continental margin) have been analysed to improve the understanding of the factors influencing pteropod preservation. The aragonite compensation depth (ACD) is located at 250-400 m water depth, which corroborates previous observations of a very shallow ACD in the northern Arabian Sea. With the exception of the Hab transect off Karachi, the ACD coincides with the upper boundary of the OMZ located at 250 m water depth. The shell preservation index of the pteropod Limacina inflata (LDX) was applied on six surface sediment samples showing good to very good preservation (LDX: 2.2 to 1.3). The 30 000 yr long record of sediment core SO90 137KA is characterized by alternations between bioturbated and laminated sediments. Bioturbated sediments occurring in the Early Holocene, Younger Dryas and time-equivalents of Heinrich events contain well to perfectly preserved tests of L. inflata (LDX: 2.1-0.2), whereas only traces of pteropods are found in laminated intervals. The close linkage of pteropod preservation in the surface sediments and in core 137KA to well-oxygenated conditions can be explained by repetitive intermediate water formation in the Arabian Sea down to at least 600 m water depth in times of enhanced NE monsoons during stadials and H-equivalents. Low amounts of pteropods in laminated sediments (interstadials, Late Holocene) and in the present-day oxygen minimum zone (OMZ) indicate a weak NE monsoon, stable OMZ and shallow ACD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methane seepage leads to Mg-calcite and aragonite precipitation at a depth of 4,850 m on the Aleutian accretionary margin. Stromatolitic and oncoid growth structures imply encrustation of microorganisms (microbial mats) in the host sediment with a unique growth direction downward into the sediment, forming crust-shaped lithologies. Biomarker investigations of the residue after carbonate dissolution show strong enrichments in crocetane and archaeol, which contain extremely low d13C values. This indicates the presence of methane-consuming archaea, and d13C values of -42 to -51 per mill PDB indicate that methane is the carbon source for the carbonate crusts. Thus, it appears that stromatolitic encrustations of methanotrophic anaerobic archaea probably occurs in a consortium with sulphate-reducing bacteria and that carbonate precipitation proceeds downward into the sediment, where ascending cold fluids provide a methane source. Strontium and oxygen isotope analyses as well as 14C ages of the carbonates suggest that the fluids come from deep within the sediment and that carbonate precipitation began about 3,000 years ago.