279 resultados para Apparent hydrogen isotope fractionation
Resumo:
Geochemical investigations on gases and interstitial waters from ODP Site 768 (Sulu Trench/Philippines) demonstrate the application of molecular gas composition in combination with stable isotope analyses to the genetic classification of light hydrocarbons. 13C/12C and D/H ratios of methane from gas pockets in cores and gases desorbed from frozen sediments by a vacuum/acid treatment suggest a microbial generation of methane by a CO2 reducing process in sediments with low sulfate concentrations. Isotope data and molecular composition of sediment gases liberated by the vacuum/acid treatment seem to be affected by a secondary desorption process during sampling. A comparison between the D/H ratios of methane from gas pockets and interstitial H2O points to an in-situ generation of methane down to a sub-bottom depth of approx. 720 m. Below this depth hydrogen isotope data indicate a migration of light hydrocarbons into pyroclastic sediments at this site. The occurrence of higher hydrocarbons (propane to pentane) in gases from gas pockets coincides with the vertical distribution of mature organic matter. Gases within the zone of mature organic matter are gases of a mixed microbial and thermal origin.
Resumo:
Whole-rock basalt samples from the upper half of Deep Sea Drilling Project Hole 504B have oxygen-isotope compositions typical of mid-ocean-ridge basalts which have experienced a moderate degree of low-temperature alteration by sea water. By contrast, d18O values in the lower half of the hole correspond to basalts which have experienced almost no detectable oxygen-isotope alteration. These observations suggest that the overall water/rock ratio was lower in the lower half of the drilled crust. A correlation between d18O values and 87Sr/86Sr ratios suggests that the water/rock ratio, rather than temperature variation, was the main factor determining basalt d18O values. Hydrogen-isotope data appear to be consistent with a low water/rock ratio in the lower part of the crust.
Resumo:
Culture studies of microorganisms have shown that the hydrogen isotopic composition of fatty acids depends on their metabolism, but there are only few environmental studies available to confirm this observation. Here we studied the seasonal variability of the deuterium/hydrogen (D/H) ratio of fatty acids in the coastal Dutch North Sea and compared this with the diversity of the phyto- and bacterioplankton. Over the year, the stable hydrogen isotopic fractionation factor epsilon between fatty acids and water ranged between -172 per mil and -237 per mil, the algal-derived polyunsaturated fatty acid nC20:5 being the most D-depleted and nC18:0 the least D-depleted fatty acid. The D-depleted nC20:5 is in agreement with culture studies, which indicates that photoautotrophic microorganisms produce fatty acids which are significantly depleted in D relative to water. The epsilon-lipid/water of all fatty acids showed a transient shift towards increased fractionation during the spring phytoplankton bloom, indicated by increasing chlorophyll a concentrations and relative abundance of the nC20:5 PUFA, suggesting increased contributions of photoautotrophy. Time periods with decreased fractionation (less negative epsilon-lipid/water values) can be explained by an increased contribution by heterotrophy to the fatty acid pool. Our results show that the hydrogen isotopic composition of fatty acids is a useful tool to assess the community metabolism of coastal plankton.
Resumo:
The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.
Resumo:
We have measured the stable carbon isotopic composition of bulk organic matter (POC), alkenones, sterols, fatty acids, and phytol in the coccolithophorid Emiliania huxleyi grown in dilute batch cultures over a wide range of CO2 concentrations (1.1-53.5 micromol L-1). The carbon isotope fractionation of POC (POC) varied by ca. 7 per mil and was positively correlated with aqueous CO2 concentration [CO2aq]. While this result confirms general trends observed for the same alga grown in nitrogen-limited chemostat cultures, considerable differences were obtained in absolute values of POC and in the slope of the relationship of POC with growth rate and [CO2aq]. Also, a significantly greater offset was obtained between the delta13C of alkenones and bulk organic matter in this study compared with previous work (5.4, cf. 3.8 per mil). This suggests that the magnitude of the isotope offset may depend on growth conditions. Relative to POC, individual fatty acids were depleted in 13C by 2.3 per mil to 4.1 per mil, phytol was depleted in 13C by 1.9 per mil, and the major sterol 24-methylcholesta-5,22E-dien-3beta-ol was depleted in 13C by 8.5 per mil. This large spread of delta13C values for different lipid classes in the same alga indicates the need for caution in organic geochemical studies when assigning different sources to lipids that might have delta13C values differing by just a few per mil. Increases in [CO2aq] led to dramatic increases in the alkenone contents per cell and as a proportion of organic carbon, but there was no systematic effect on values of U37k- used for reconstructions of paleo sea surface temperature.
Resumo:
Whole rock sulfur and oxygen isotope compositions of altered peridotites and gabbros from near the 15°20'N Fracture Zone on the Mid-Atlantic Ridge were analyzed to investigate hydrothermal alteration processes and test for a subsurface biosphere in oceanic basement. Three processes are identified. (1) High-temperature hydrothermal alteration (~250-350°C) at Sites 1268 and 1271 is characterized by 18O depletion (2.6-4.4 per mil), elevated sulfide-S, and high delta34S (up to ~2 wt% and 4.4-10.8 per mil). Fluids were derived from high-temperature (>350°C) reaction of seawater with gabbro at depth. These cores contain gabbroic rocks, suggesting that associated heat may influence serpentinization. (2) Low-temperature (<150°C) serpentinization at Sites 1272 and 1274 is characterized by elevated delta18O (up to 8.1 per mil), high sulfide-S (up to ~3000 ppm), and negative delta34S (to -32.1 per mil) that reflect microbial reduction of seawater sulfate. These holes penetrate faults at depth, suggesting links between faulting and temperatures of serpentinization. (3) Late low-temperature oxidation of sulfide minerals caused loss of sulfur from rocks close to the seafloor. Sulfate at all sites contains a component of oxidized sulfide minerals. Low delta34S of sulfate may result from kinetic isotope fractionation during oxidation or may indicate readily oxidized low-delta34S sulfide derived from microbial sulfate reduction. Results show that peridotite alteration may be commonly affected by fluids +/- heat derived from mafic intrusions and that microbial sulfate reduction is widespread in mantle exposed at the seafloor.
Resumo:
Boron and Pb isotopic compositions together with B-U-Th-Pb concentrations were determined for Pacific and Indian mantle-type mid-ocean ridge basalts (MORB) obtained from shallow drill holes near the Australian Antarctic Discordance (AAD). Boron contents in the altered samples range from 29.7 to 69.6 ppm and are extremely enriched relative to fresh MORB glass with 0.4-0.6 ppm B. Similarly the d11B values range from 5.5? to 15.9? in the altered basalts and require interaction with a d11B enriched fluid similar to seawater ~39.5? and/or boron isotope fractionation during the formation of secondary clays. Positive correlations between B concentrations and other chemical indices of alteration such as H2O CO2, K2O, P2O5, U and 87Sr/86Sr indicate that B is progressively enriched in the basalts as they become more altered. Interestingly, d11B shows the largest isotopic shift to +16? in the least altered basalts, followed by a continual decrease to +5-6? in the most altered basalts. These observations may indicate a change from an early seawater dominated fluid towards a sediment-dominated fluid as a result of an increase in sediment cover with increasing age of the seafloor. The progression from heavy d11B towards lighter values with increasing degrees of alteration may also reflect increased formation of clay minerals (e.g., saponite). A comparison of 238U/204Pb and 206Pb/204Pb in fresh glass and variably altered basalt from Site 1160B shows extreme variations that are caused by secondary U enrichment during low temperature alteration. Modeling of the U-Pb isotope system confirms that some alteration events occurred early in the 21.5 Ma history of these rocks, even though a significant second pulse of alteration happened at ~12 Ma after formation of the crust. The U-Pb systematics of co-genetic basaltic glass and variably low temperature altered basaltic whole rocks are thus a potential tool to place age constraints on the timing of alteration and fluid flow in the ocean crust.