753 resultados para Antarctic Ice Sheet
Resumo:
We report here the results of a study aimed at providing radiometric age control on glacial events in the Weddell Sea during the late Quaternary. Sediment cores from the eastern continental shelf, where the East Antarctic ice sheet was grounded, have recovered glacial-marine sediments resting on tills and the latter deposits predate the isotope stage 2 last glacial maximum. Sediment cores from the continental slope and rise sampled a prominent ice-rafted debris layer, and radiocarbon ages indicate that this ice-rafting event took place prior to 26 000 yr B.P. Thus, the combined data indicate that significant deglaciation of the Weddell Sea continental shelf took place prior to the last glacial maximum. Our data also suggest that the ice masses that border the Weddell Sea are more extensive than they were during the previous glacial minimum.
Resumo:
We investigate the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (delta18Osw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminiferal delta18O values. We have constructed two benthic foraminiferal Mg/Ca records from intermediate water depth sites (Ocean Drilling Program sites 757 and 689 from the subtropical Indian Ocean and the Weddell Sea, respectively). Together with the previously published composite record of Lear et al. (2002, doi:10.1126/science.287.5451.269) and the Neogene record from the Southern Ocean of Billups and Schrag (2002, doi:10.1029/2000PA000567), we obtain three, almost complete representations of the delta18Osw for the past 52 Myr. We discuss the sensitivity of early Cenozoic Mg/Ca-derived paleotemperatures (and hence the delta18Osw) to assumptions about seawater Mg/Ca ratios. We find that during the middle Eocene (~ 49-40 Ma), modern seawater ratios yield Mg/Ca-derived temperatures that are in good agreement with the oxygen isotope paleothermometer assuming ice-free conditions. Intermediate waters cooled during the middle Eocene reaching minimum temperatures by 40 Ma. The corresponding delta18Osw reconstructions support ice growth on Antarctica beginning by at least 40 Ma. At the Eocene/Oligocene boundary, Mg/Ca ratios (and hence temperatures) from Weddell Sea site 689 display a well-defined maximum. We caution against a paleoclimatic significance of this result and put forth that the partitioning coefficient of Mg in benthic foraminifera may be sensitive to factors other than temperature. Throughout the remainder of the Cenozoic, the temporal variability among delta18Osw records is similar and similar to longer-term trends in the benthic foraminiferal delta18O record. An exception occurs during the Pliocene when delta18Osw minima in two of the three records suggest reductions in global ice volume that are not apparent in foraminiferal delta18O records, which provides a new perspective to the ongoing debate about the stability of the Antarctic ice sheet. Maximum delta18Osw values recorded during the Pleistocene at Southern Ocean site 747 agree well with values derived from the geochemistry of pore waters (Schrag et al., 1996, doi:10.1126/science.272.5270.1930) further highlighting the value of the new Mg/Ca calibrations of Martin et al. (2002, doi:10.1016/S0012-821X(02)00472-7) and Lear et al. (2002, doi:10.1016/S0016-7037(02)00941-9) applied in this study. We conclude that the application of foraminiferal Mg/Ca ratios allows a refined view of Cenozoic ice volume history despite uncertainties related to the geochemical cycling of Mg and Ca on long time scales.
Resumo:
Pliocene changes in the vertical water mass structure of the western South Atlantic are inferred from changes in benthic foraminiferal assemblages and stable isotopes from DSDP Holes 516A, 517, and 518. Factor analysis of 34 samples from Site 518 reveals three distinct benthic foraminiferal assemblages that have been associated with specific subsurface water masses in the modern ocean. These include a Nuttalides umbonifera assemblage (Factor 1) associated with Antarctic Bottom Water (AABW), a Globocassidulina subglobosa-Uvigerina peregrina assemblage (Factor 2) associated with Circumpolar Deep Water (CPDW), and an Oridorsalis umbonatus-Epistominella exigua assemblage associated with North Atlantic Deep Water (NADW). Bathymetric gradients in d13C between Holes 516A (1313 m), 517 (2963 m), and 518 (3944 m) are calculated whenever possible to monitor the degree of similarity and/or difference in the apparent oxygen utilization (AOU) of water masses located at these depths during the Pliocene. Changes in bathymetric d13C gradients coupled with benthic foraminiferal assemblages record fundamental changes in the vertical water mass structure of the Vema Channel during the Pliocene from 4.1 to 2.7 Ma. At Site 518, the interval from 4.1 to 3.6 Ma is dominated by the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages. The d13C gradient between Holes 518 (3944 m) and 516A (1313 m) undergoes rapid oscillations during this interval though no permanent increase in the gradient is observed. However, d13C values at Site 518 are clearly lighter during this interval. These conditions may be related to increased bottom water activity associated with the re-establishment of the West Antarctic Ice Sheet in the late Gilbert Chron (-4.2 to 3.6 Ma) (Osborn et al., 1982). The interval from 3.6 to 3.2 Ma is marked by a dominance of the G. subglobosa-U. peregrina (Factor 2) assemblage and lack of a strong d13C gradient between Holes 518 (3944 m) and 516A (1313 m). We suggest that shallow circumpolar waters expanded to depths of a least 3944 m (Site 518) during this time. The most profound faunal and isotopic change occurs at 3.2 Ma, and is marked by dominance of the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages, a 1.1 per mil enrichment in d18O, and a large negative increase in the d13C gradient between Holes 518 and 516A. These changes at Site 518 record the vertical displacement of circumpolar waters by AABW and NADW. This change in vertical water mass structure at 3.2 Ma was probably related to a global cooling event and/or final closure of the Central American seaway. A comparison of the present-day d13C structure of the Vema Channel with a reconstruction between 3.2 and 2.7 Ma indicates that circulation patterns during this late Pliocene interval were similar to those of the modern western South Atlantic.
Resumo:
The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ~1 per mil between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ~1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ~0.6 per mil. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records.
Resumo:
During Ocean Drilling Program (ODP) Leg 178, we drilled three sites on sediment drifts deposited on the continental rise on the western margin of the Antarctic Peninsula. These hemipelagic drifts were targeted for their potential to preserve a continuous record of the behavior of the West Antarctic Ice Sheet over the last 10 m.y. It has been proposed that drift development is linked to advances and retreats of the Antarctic continental ice sheet (Pudsey and Camerlenghi, 1998, doi:10.1017/S0954102098000376, and references therein; Barker, Camerlenghi, Acton, et al., 1999, doi:10.2973/odp.proc.ir.178.1999). However, the sediment is characterized by a very low carbonate content, with foraminifers restricted to very narrow intervals. This lack of carbonate precludes the construction of a delta18O or CaCO3 stratigraphy, depriving these sites of an important chronologic tool and global ice volume proxy.
Resumo:
Because of a close relationship between detrital flux variations and magnetic susceptibility (MS) flux (MS cm**3 of bulk sediment multiplied by the linear sedimentation rate) variations in the southeast Indian basin of the southern ocean, MS flux profiles have been used to examine the spatial and temporal detrital flux changes in this basin during the last climatic cycle. Results indicate a general increase in detrital material input during the coldest periods, suggesting a widespread phenomenon, at least on the basin scale. Mineralogical data, geochemical data, and 87Sr/86Sr isotopic ratios have been used to determine the origin and transport mechanisms responsible for increased detrital flux during glacial periods. Mineralogical and geochemical data show that these glacial 'highs' are due to increases in both Kerguelen-Crozet volcanic and Antarctic detrital inputs. The 87Sr/86Sr isotopic composition of the >45-µm fraction indicates that the Kerguelen-Crozet province contributes to at least 50% of the coarse particule input to the west. This contribution decreases eastward to reach less than 10%. These tracers clearly indicate that the Crozet-Kerguelen province was a major source region of detrital in the western part of the basin during glacial times. In contrast, material of Antarctic origin is well represented in the whole basin (fine and coarse fractions). Because of the minor amount of coarse particles in the sediments, volcanic particles from Kerguelen and crustal particles from Antarctica have most probably been transported by the Antarctic bottom water current and/or the Circumpolar deepwater current during glacial periods as is the case today. Nevertheless, the presence of coarse particles even in low amount suggests also a transport by ice rafting (sea-ice and icebergs), originated from both Kerguelen and Antarctic sources. However, the relative importance of both hydrographic and ice-rafting modes of transport cannot be identified accurately with our data. During low sea level stands (glacial maximum periods), increasing instability and erosion of the continental platform and shallow plateaus could have resulted in a more efficient transfer of crustal and volcano-detrital material to the Southeast Indian basin. At the same time, extension of the grounded ice shelves over the continental margins and increase in the erosion rate of the Antarctic ice sheet could have induced a greater input of ice rafted detritus (IRD) to southern ocean basins. Enhancement of the circumpolar deepwater current strength might have also carried a more important flux of detrital material from Kerguelen. However, an increase in the bottom water flow is not necessarily required.
Resumo:
Temporal changes in benthic foraminiferal assemblages were quantitatively examined (> 63 µm fraction) in four southwest Pacific deep-sea Neogene sequences in a depth transect between approximately 1300 and 3200 m to assist in evaluating paleoeeanographic history. The most conspicuous changes in benthic foraminiferal assemblages occurred in association with paleoclimatic changes defined at least in part by oxygen isotopic changes. The largest, centered at ~15 Ma (early Middle Miocene), is represented by an increase in the relative frequencies of Epistominella exigua, which underwent a major upward depth migration at that time. This was contemporaneous with the well-known positive oxygen isotopic shift in the early Middle Miocene. In Sites 588 and 590, most of the increase in relative abundances of E. exigua occurred during the middle to later part of the ~80 shift, following major growth of the east Antarctic ice sheet. Later assemblage changes occurred at 8.5 and 6.5 Ma. These associations indicate that the benthic foraminiferal assemblages in this depth transect largely adjusted to changes in deep waters related to Antarctic cryospheric evolution. In general, the Neogene benthic foraminiferal assemblages in this region underwent little change during the last 23 million years. This faunal conservatism suggests that deep-sea environments underwent relatively little change in the southwest Pacific during much of the Neogene. Although paleoceanographic changes did occur, partly in response to highlatitude cryospheric evolution, these were not of sufficient magnitude to create major deep-sea faunal changes in this part of the ocean. The benthic foraminiferal assemblages are dominated by individuals smaller than 150 µm. Most taxonomic turnover occurred in the larger (> 150 µm) size fractions.
Resumo:
Fresh deposits above the margins of Reedy Glacier show that maximum ice levels during the last glaciation were several hundred meters above present near the glacier mouth and converged to less than 60 m above the present-day surface at the head of the glacier. Exposure ages of samples from five sites along its margin show that Reedy Glacier and its tributaries thickened asynchronously between 17 and 7 kyr BP At the Quartz Hills, located midway along the glacier, maximum ice levels were reached during the period 17-14 kyr BP. Farther up-glacier the ice surface reached its maximum elevation more recently: 14.7-10.2 kyr BP at the Caloplaca Hills; 9.1-7.7 kyr BP at Mims Spur; and around 7 kyr BP at Hatcher Bluffs. We attribute this time-transgressive behavior to two different processes: At the glacier mouth, growth of grounded ice and subsequent deglaciation in the Ross Sea embayment caused a wave of thickening and then thinning to propagate up-glacier. During the Lateglacial and Holocene, increased snow accumulation on the East Antarctic Ice Sheet caused transient thickening at the head of the glacier. An important result of this work is that moraines deposited along Reedy Glacier during the last ice age cannot be correlated to reconstruct a single glacial maximum longitudinal profile. The profile steepened during deglaciation of the Ross Sea, thinning at the Quartz Hills after 13 kyr BP while thickening upstream. Near its confluence with Mercer Ice Stream, rapid thinning beginning prior to 7-8 kyr BP reduced the level of Reedy Glacier to close to its present level. Thinning over the past 1000 years has lowered the glacier by less than 20 m.
Resumo:
Maestrichtian to Holocene calcareous nannofossils from two closely spaced sites on the upper continental rise some 100 miles (161 km) southeast of Atlantic City, New Jersey, were zoned in order to help date a major canyon-cutting event in the late Miocene and to delineate and correlate other hiatuses with seismic stratigraphy. Mid-middle Eocene through middle Miocene sediments (Zones CP14 to CN6) were not recovered in these holes, but nearly all other zones are accounted for. The Eocene section is described in a companion chapter (Applegate and Wise, 1987, doi:10.2973/dsdp.proc.93.118.1987). Nannofossils are generally sparse and moderately preserved in the clastic sediments of Site 604. Sedimentation rates are extremely high for the upper Pleistocene (201 m/m.y. minimum) above a hiatus calculated to span 0.44 to 1.1 Ma. The associated disconformity is correlated with local seismic reflection Horizon Pr . Sedimentation rates continue to be high (93 m/m.y.) down to a second hiatus in the upper Pliocene dated from about 2.4 to 2.9 (or possibly 3.3) Ma. The disconformity associated with this hiatus is correlated with local seismic reflection Horizon P2 and regional Reflector Blue, which can be interpreted to mark either the onset of Northern Hemisphere continental glaciation or circulation changes associated with the closure of the Central American Seaway. Sedimentation rates in the pre-glacial lower Pliocene are only about a third those in the glacial upper Pliocene. A prominent disconformity in the upper Miocene marks a major lithologic boundary that separates Messinian(?) glauconitic claystones above from lower Tortonian conglomeratic debris flows and turbidites below. The debris flows recovered are assigned to nannofossil Zones CN8a and CN7, but drilling difficulties prevented penetration of the bottom of this sequence some 100 m below the terminal depth of the hole. Correlation of the lower bounding seismic reflector (M2/Merlin?) to a drift sequence drilled on the lower rise at DSDP Site 603, however, predicts that the debris flows began close to the beginning of the late Miocene (upper Zone CN6 time) at about 10.5 Ma. The debris flows represent a major canyon-cutting event that we correlate with the beginning of the particularly severe late Miocene glaciations believed to be associated with the formation of the West Antarctic Ice Sheet. The existence of these spectacular debris flows strongly suggest that the late Miocene glacio-eustatic low stand occurred during Vail Cycle TM3.1 (lower Tortonian) rather than during Vail Cycle TM3.2 (Messinian) as originally published. Beneath a set of coalesced regional disconformities centered upon seismic reflection Horizon Au, coccoliths are abundant and in general are moderately preserved at Site 605 in a 619-m carbonate section extending from the middle Eocene Zone CP13b to the upper Maestrichtian Lithraphidites quadratus Zone. Sedimentation rates are 37 m/m.y. in the Eocene down to a condensed interval near the base (Zone CP9). A disconformity is suspected near the Eocene/Paleocene boundary. Sedimentation rates for the upper Paleocene Zone CP8 are similar to those of the Eocene, but Zones CP7 and CP6 lie within another condensed interval. The highest Paleocene rates are 67 m/m.y. down through Zones CP5 and CP4 to a major disconformity that separates the upper Paleocene from the Danian. This hiatus spans about 2.6 m.y. (upper Zone CP3 to lower Zone CP2) and corresponds to the major sea-level drop at the base of Vail Cycle TE2.1. As the most prominent break in this Paleogene section, it may correspond to seismic reflection Horizon A* of the North American Basin. Sedimentation rates from this point to the Cretaceous/Tertiary boundary drop to 11 m/m.y., still high for a Paleocene DSDP section. No major break in deposition could be detected at the Cretaceous/Tertiary boundary.
Resumo:
Sediments from Ocean Drilling Program Site 1165 in the Indian Ocean sector of the Southern Ocean (off Prydz Bay) contain a series of layers that are rich in ice-rafted debris (IRD). Here we present evidence that IRD-rich layers at Site 1165 at 7, 4.8, and 3.5 Ma record short-lived, massive discharges of icebergs from Wilkes Land and Adélie Land, more than 1500 kilometers to the east of the depositional site. This distant source of icebergs is clearly defined by the presence of IRD hornblende grains with 40Ar/39Ar ages of 1200-1100 Ma and 1550-1500 Ma, ages that are not found on the East Antarctic continent in locations closer to Site 1165. This observation requires enormous amounts of detritus-carrying drifting icebergs, most likely in the form of large icebergs. These events probably reflect destabilization, surge, and break-up of ice streams on the Wilkes Land and Adélie Land margins of the East Antarctic Ice Sheet, in the vicinity of the low-lying Aurora and Wilkes Basins. They occurred under warming conditions, but each coast seems to have produced ice-rafting events independently, at different times. The data presented here constitute the first evidence of far-traveled icebergs from specific source areas around the East Antarctic perimeter. Launch of these icebergs may have happened during quite dramatic events, perhaps analogous to "Heinrich Events" in the North Atlantic.
Resumo:
We explore the applicability of paired Mg/Ca and 18O/16O measurements on benthic foraminifera from Southern Ocean site 747 to paleoceanographic reconstructions on pre-Pleistocene timescales. We focus on the late Oligocene through Pleistocene (27-0 Ma) history of paleotemperatures and the evolution of the d18O values of seawater (d18Osw) at a temporal resolution of ~100-200 kyr. Absolute paleotemperature estimates depend on assumptions of how Mg/Ca ratios of seawater have changed over the past 27 Myr, but relative changes that occur on geologically brief timescales are robust. Results indicate that at the Oligocene to Miocene boundary (23.8 Ma), temperatures lag the increase in global ice-volume deduced from benthic foraminiferal d18O values, but the smaller-scale Miocene glaciations are accompanied by ocean cooling of -1°C. During the mid-Miocene phase of Antarctic ice sheet growth (~15-13 Ma), water temperatures cool by ~3°C. Unlike the benthic foraminiferal d18O values, which remain relatively constant thereafter, temperatures vary (by 3°C) and reach maxima at ~12 and ~8.5 Ma. The onset of significant Northern Hemisphere glaciation during the late Pliocene is synchronous with an ~4°C cooling at site 747. A comparison of our d18Osw curve to the Haq et al. (1987, doi:10.1126/science.235.4793.1156 ) sea level curve yields excellent agreement between sequence boundaries and times of increasing seawater 18O/16O ratios. At ~12-11 Ma in particular, when benthic foraminiferal d18O values do not support a further increase in ice volume, the d18Osw curve comes to a maximum that corresponds to a major mid-Miocene sea level regression. The agreement between the character of our Mg/Ca-based d18Osw curve and sequence stratigraphy demonstrates that benthic foramaniferal Mg/Ca ratios can be used to trace the d18Osw on pre-Pleistocene timescales despite a number of uncertainties related to poorly constrained temperature calibrations and paleoseawater Mg/Ca ratios. The Mg/Ca record also highlights that deep ocean temperatures can vary independently and unexpectedly from ice volume changes, which can lead to misinterpretations of the d18O record.
Resumo:
West Antarctic ice shelves have thinned dramatically over recent decades. Oceanographic measurements that explore connections between offshore warming and transport across a continental shelf with variable bathymetry toward ice shelves are needed to constrain future changes in melt rates. Six years of seal-acquired observations provide extensive hydrographic coverage in the Bellingshausen Sea, where ship-based measurements are scarce. Warm but modified Circumpolar Deep Water floods the shelf and establishes a cyclonic circulation within the Belgica Trough with flow extending toward the coast along the eastern boundaries and returning to the shelf break along western boundaries. These boundary currents are the primary water mass pathways that carry heat toward the coast and advect ice shelf meltwater offshore. The modified Circumpolar Deep Water and meltwater mixtures shoal and thin as they approach the continental slope before flowing westward at the shelf break, suggesting the presence of the Antarctic Slope Current. Constraining meltwater pathways is a key step in monitoring the stability of the West Antarctic Ice Sheet.
Resumo:
Paleogene stable oxygen and carbon isotopes were measured in formainifera from ODP Sites 689 and 690 at Maud Rise in the Atlantic Ocean sector of the Southern Ocean, and from Sites 738, 744, 748 and 749 at the southern Kerguelen Plateau in the Indian Ocean sector. These data were compared with sedimentological data from the same sample set. Both benthic and planktic d18O values document a cooling trend beginning around 49.5 Ma at all sites. During the late middle Eocene planktic d18O values indicate a steepening latitudinal temperature gradient from 14°C at the northern sites towards 10°C at the southernmost sites. Terrigeneous sand grains of probably ice rafted origin and clay mineral assemblages point to the existence of a limited East Antarctic ice cap with some glaciers reaching sea level as early as middle Eocene time around 45.5 Ma. Between 45 and 40 Ma, average paleotemperatures were between 5° and 7°C in deep and intermediate water masses, while near-surface water masses ranged between 6° and 10°C. During the late Eocene, between 40 and 36 Ma, average temperatures further decreased to 4°-5°C in the deep and intermediate water masses and to 5°-8°C near the sea surface. Abruptly increasing d18O values at approximately 35.9 Ma exactly correlate with a sharp pulse in the deposition of ice-rafted material on the Kerguelen Plateau, a dramatic change in clay mineral composition, and an altered Southern Ocean circulation indicated by a differentiation of benthic d13C values between sites, increasing opal concentrations and decreasing carbonate contents. For planktic and benthic foraminifera this d18O increase ranges between 1.0 and 1.3 per mil, and between 0.9 and 1.4 per mil, respectively. We favour a hypothesis that explains most of the d18O shift at 35.9 Ma with a buildup of a continental East Antarctic ice sheet. Consequently, relatively warm Oligocene Antarctic surface water temperatures probably are explained by a temperate, wet-based nature of the ice sheet. This would also aid in the fast build-up of an ice sheet by enhancing the moisture transport on to the continent.
Resumo:
Downcore oxygen and carbon stable isotope records of planktonic and benthic foraminifers and fine-fraction carbonate from the southern high latitudes provide critical paleohydrographic constraints on the evolution of the Southern Ocean climate. In particular, the potential effects of an intensified Antarctic Circumpolar Current on the thermal isolation and cooling of the southern high latitudes, production of cold deep waters, and, ultimately, accumulation of continental ice on Antarctica in the middle Miocene are matters of interest. Using sediment materials from Ocean Drilling Program Leg 189 Sites 1170 and 1172 off Tasmania, Ennyu and Arthur (2004, doi:10.1029/151GM13) established the surface- and deepwater stable isotope records in the Southern Ocean across the middle Miocene event of the east Antarctic ice sheet expansion and discussed the paleoclimate proxy records in terms of the thermal evolution of the southern high latitudes and its effect on deepwater circulation. This report provides data tables and other supporting information relevant to discussions presented in Ennyu and Arthur (2004, doi:10.1029/151GM13). Items included in this report are (1) the oxygen and carbon stable isotope data measured on the Miocene bulk fine-fraction (i.e., <63 µm, primarily polyspecific nannofossil assemblage) carbonate and planktonic and benthic foraminifers from Holes 1170A and 1172A and (2) the Miocene depth-age models for the two sites.
Resumo:
A mid-Holocene climate optimum is inferred from a palaeosalinity reconstruction of a closed saline lake (Beall Lake) from the Windmill Islands, East Antarctica using an expanded diatom salinity weighted averaging (WA) regression and calibration model. The addition of 14 lakes and ponds from the Windmill Islands, East Antarctica, to an existing weighted averaging regression and calibration palaeosalinity model of 33 lakes from the Vestfold Hills, East Antarctica expands the number of taxa and lakes and the range of salinity in the existing model and improves the model's predictive ability. This improved model was used to infer Holocene changes in lake water salinity in Beall Lake, Windmill Islands. Six changes in diatom-inferred salinity in Beall Lake are put into broad chronological context based on three radiocarbon dates: as the East Antarctic Ice Sheet (EAIS) retreated from the Windmill Islands during the early Holocene (~9000-8130 corr. yr BP), Beall Lake formed as a melt water-fed freshwater lake, which gradually became more saline as marine influence increased from ~8000 corr. yr BP. Between ~8000 and 4800 corr. yr BP, the diatom assemblage included planktonic marine taxa such as Chaetoceros spp. and cryophilic taxa such as Fragilariopsis cylindrus, which indicate favourable summer growth conditions. A mid-Holocene warm period produced a climate that was warmer and more humid with increased precipitation and snow accumulation. This is reflected in the Beall Lake core as a reduction in the salinity of the lake diatom assemblage from ~4800-4600 corr. yr BP. Holocene isostatic uplift rates in the Windmill Islands vary from 5-6 m/1000 yr. By applying this uplift rate, it is calculated that the bedrock would have risen above sea level by ~4000 yr BP. The Beall Lake core diatom assemblage from ~4600-2900 corr. yr BP includes both marine cryophilic and planktonic taxa together with freshwater benthic and planktonic lacustrine taxa. This mix of species indicates the emergence of the lake from the sea around ~4600 corr. yr BP. From ~2800 corr. yr BP, retreat of the ice margin led to increasing melt water inputs and associated freshening of the lake basin until ~1900 corr. yr BP. The lake basin had no oceanic influence by this time, allowing a terrestrial freshwater flora to establish and thrive for the next ~1000 yr. At ~1850 corr. yr BP, a sudden and rapid salinity change is evident in Beall Lake. A late Holocene warm period between 2000 and 1000 yr BP has been observed in ice core records from Law Dome (an ice cap abutting the Windmill Islands to the east and north). It is therefore inferred that, at ~1850 corr. yr BP, summer temperatures within the Beall Lake catchment area were much higher than present summer temperatures. The climate optimum identified in the Beall Lake core ~4800 yr BP confirms mid-Holocene warming of the Windmill Islands and suggests a synchronous mid-Holocene climate optimum occurred across coastal East Antarctica. In addition, the abrupt climate change inferred at ~1850 yr BP suggests that higher resolution sampling of sediment cores from coastal East Antarctic limnological oases will provide more evidence of rapid climate change events over coastal East Antarctica in future.