278 resultados para AK44-5000


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1970 a large deposit of ferromanganese nodules was discovered on the floor of the Indian Ocean southwest of Cape Leeuwin by the research vessel USNS Eltanin. This discovery, which was based largely on bottom photographs from about 20 stations, was discussed by Frakes (1975) and Kennett and Watkins (1975, 1976). The photographs suggest that the deposit spreads, nearly continuously, over 900 000km^2, and cores showed that the nodules are essentially confined to the sediment surface. Kennett and Watkins (op. cit.) pointed to the abundance of ripple and scour marks and current-formed lineations on the present surface, and of extensive disconformities in the cores, as evidence of strong present and past bottom currents in the region. They suggested that the current action had resulted in very low sedimentation rates, which had allowed the nodule field, named by them (1976) the 'Southeast Indian Ocean Manganese Pavement', to develop. In early 1976 the authors used the research vessel HMAS Diamantina for a 10-day cruise in the region to sample the nodules in order to study their chemistry and mineralogy. During the cruise 9 stations were occupied, 8 of them successfully (Figure 1), and about 2000 nodules were recovered from the sea bed. The apparatus used was a light box dredge on the ships hydrowire, which had a breaking strain of about one tonne. Although an attempt was made to reoccupy Eltanin photographic stations, it should be noted that positioning was by celestial navigation, so errors of up to 10 km are possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon-14 determinations on box cores of calcareous ooze from the western and eastern equatorial Pacific suggest that patterns of mixed-layer ages, sedimentation rates, and mixed-layer thicknesses are controlled by gradients of carbonate dissolution and fertility, and by small-scale redeposition processes. Mixed-layer ages range from 3000 to 7000 years, with a mode between 4000 and 5000 years. Sedimentation rates range from 0.8 to 2.4 cm/1000 years. Mixed-layer depths, calculated according to the box model of mixing, range from 7 cm to 16 cm. Observed thicknesses are about one-fourth smaller than calculated ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new tool for large-area photo-mosaicking (LAPM tool). This tool was developed specifically for the purpose of underwater mosaicking, and it is aimed at providing end-user scientists with an easy and robust way to construct large photo-mosaics from any set of images. It is notably capable of constructing mosaics with an unlimited number of images on any modern computer (minimum 1.30 GHz, 2 GB RAM). The mosaicking process can rely on both feature matching and navigation data. This is complemented by an intuitive graphical user interface, which gives the user the ability to select feature matches between any pair of overlapping images. Finally, mosaic files are given geographic attributes that permit direct import into ArcGIS. So far, the LAPM tool has been successfully used to construct geo-referenced photo-mosaics with photo and video material from several scientific cruises. The largest photo-mosaic contained more than 5000 images for a total area of about 105,000 m**2. This is the first article to present and to provide a finished and functional program to construct large geo-referenced photo-mosaics of the seafloor using feature detection and matching techniques. It also presents concrete examples of photo-mosaics produced with the LAPM tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment in both, water column and sediment, supports our ability to locate future nodule deposits and evaluates the potential ecological and environmental effects of future deep-sea mining. For these purposes we evaluated the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180 - 300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labelled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.