498 resultados para AII15-765
Resumo:
A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (
Resumo:
Benthic foraminifers were studied in 99 samples collected from the lower 200 m of Hole 765C. The studied section ranges from the Tithonian to Aptian, and benthic foraminifers can be subdivided into five assemblages on the basis of faunal diversity and stratigraphic ranges of distinctive species. Compared with deep-water assemblages from Atlantic DSDP sites and Poland, assemblages from the Argo Abyssal Plain display a higher diversity of agglutinated forms, which comprise the autochthonous assemblages. Assemblages at the base of Hole 765C are wholly composed of agglutinated forms, reflecting deposition beneath the carbonate compensation depth (CCD). Most calcareous benthic species are found in turbidite layers, and the presence of an upper Valanginian Praedorothia praehauteriviana Assemblage may indicate deposition at or just below the CCD. The P. praehauteriviana Assemblage from Hole 765C is the temporal equivalent of similar assemblages from DSDP Holes 534A, 416A, 370, 105, and 101 in the Atlantic Ocean and Hole 306 in the Pacific Ocean. Stratigraphic ranges of cosmopolitan agglutinated species at Site 765 generally overlap with their reported ranges in the Atlantic and in the bathyal flysch sequences of the Carpathians; however, several species from Hole 765C have not been previously reported from Uppermost Jurassic to Lower Cretaceous abyssal sediments.
Resumo:
During Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). The assemblages are characterized by a scarcity or absence of Tethyan taxa. The Berriasian-early Aptian radiolarian record recovered at Site 765 is unique in its density of well-preserved samples and in its faunal contents. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers of Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant species, whereas sand faunas are dominated by non-Tethyan species that have never been reported before. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast results from a difference in provenance, rather than from hydraulic sorting. Biostratigraphic dating proved difficult principally because of the paucity or even absence of (Tethyan) species used in published zonations. In addition, published zonations are contradictory and do not reflect total ranges of species. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin reflect restricted oceanic conditions for the latest Jurassic to Barremian time period. Neither the sedimentary facies nor the faunal associations bear any resemblance to sediment and radiolarian facies observed in typical Tethyan sequences. I conclude that the Argo Basin was paleoceanographically separated from Tethys during the Late Jurassic and part of the Early Cretaceous by its position at a higher paleolatitude and by enclosing landmasses, i.e., northeastern India and the Shillong Block, which were adjacent to the northwestern Australian margin before the opening. Assemblages recovered from radiolarian sand layers are dominated by non-Tethyan species that are interpreted as circumantarctic. Their sudden appearance in the late Berriasian/early Valanginian pre-dates the oceanization of the Indo-Australian break-up (Ml 1, late Valanginian) by about 5 m.y., but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and its adjacent margins probably were submerged deeply enough to allow an intermittent "spillover" of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Circumantarctic cold-water radiolarians transported into the Argo Basin upwelled along the margin and died en masse. Concomitant winnowing by bottom currents led to their accumulation in distinct radiolarite layers. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with the two pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic and Early Cretaceous seafloor spreading. The absence of typical Tethyan radiolarian species during the late Valanginian to late Hauterivian period is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (Mil) and rapid spreading between southeast India and western Australia. The reappearance and gradual increase in abundance and diversity of Tethyan forms along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian and early Aptian and may have resulted from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.
Resumo:
Volcaniclastic rocks of Late Cretaceous age occur in four out of five sites (525, 527, 528, 529) drilled on the crest and the northwest flank of the Walvis Ridge during Leg 74. They are mostly interlayered with and overlie basement in the lowermost 10-100 m of the sedimentary section. Rocks from Holes 525A and 528 were studied megascopically and microscopically, by XRD, and XRF chemical analyses of whole-rock major and trace elements were undertaken. The dominant rock of Hole 528 volcaniclastics is a fine-grained (silt to fine sand), mostly matrix-bearing (partly matrix-rich) vitric "tuff," occurring as 5-110 cm thick, partly graded layers, some of which are distinctly bedded. Volcaniclastics of Hole 525A are generally richer in sanidine crystals. Most rocks contain some nonvolcanic clasts, chiefly foraminifers and lesser amounts of shallow-water fossil debris. Scoria shards, clasts of tachylite, and fine-grained basalts as well as chemical analyses suggest a basaltic to intermediate composition for most rocks of Hole 528, whereas volcaniclastics of Hole 525A are more silicic. The occurrence of tachylite and epiclastic, coarse-grained, basaltic clasts throughout the volcaniclastic sequence at Site 528 indicates shallow-water eruptions and perhaps even ocean island volcanism. The minor occurrence in Hole 528 of trachytic? pumice shards with phenocrysts of K-feldspar and the abundance of such shards in rocks from Hole 525A indicate Plinian eruptions characteristic of more mature stages of ocean island evolution. The sedimentary structures of volcaniclastic layers and their occurrence within deep sea calcareous oozes indicate a mass flow origin. Diagenetic alteration of the volcaniclastic rocks is pronounced, and four major stages of glass shard alteration are distinguished. Despite the effects of alteration and small-scale redistribution of elements and the admixture of nonvolcanic components, there were no drastic changes in the chemical composition of the rocks, except for pronounced increases in K and Rb and decreases in Ca and Fe. The basaltic volcaniclastic rocks very much resemble basement basalts in that they are moderately evolved tholeiites derived from an LIL-enriched mantle source with Zr/Nb ratios (Hole 528) of 5 to 6. This, in conjunction with the interbedding of volcaniclastic rocks and basement lavas, indicates contemporaneous seamount or island and basement volcanic activity involving magmas derived from similar sources.
Resumo:
Indian Ocean crust formed at Sites 765 and 766 is geochemically comparable to that presently forming in the Red Sea. In both cases, we interpret the crust as reflecting high degrees of mantle melting that are associated with an enhanced thermal gradient below recently rifted continental lithosphere. Asthenospheric melts formed in this environment are rich in CaO and FeO, poor in Na2O and Al2O3, and characterized by depleted rare earth element (REE) profiles ([La/Sm]n approximately 0.5-0.6). Both the Red Sea basalts and the basalts at Sites 765 and 766 are distinct from those erupted at the present Mid-Indian Ocean Ridge. The isotope characteristics of the Site 765 basalts define a geochemical signature similar to that of the present-day Mid-Indian Ocean Ridge basalts (MIORB). The Indian Ocean mantle domain is distinct from that of the Atlantic and Pacific oceans, and this distinction has persisted since Jurassic time, when the Site 765 oceanic crust was formed.
Resumo:
A summary of calcareous nannofossil biostratigraphy performed for Late Jurassic (Kimmeridgian) to Early Cretaceous (Hauterivian) cores of Site 765 (Cores 123-765C-58R to -55R) and Site 261 (Cores 27-261-33 to -27), Argo Abyssal Plain, off northwestern Australia is presented. Precise age determinations were limited by variable preservation and the exclusion of a number of marker species due to provincialism. However, the presence of species, such as, Stephanolithion bigotii bigotii, Watznaueria manivitae, Tubodiscus verenae, and Cruciellipsis cuvillieri results in a reasonably good degree of biostratigraphic control. Biogeographic interpretation of the nannofossil data suggests that the Argo Basin occupied a position transitional between the Tethyan and Austral nannofloral realms. A cooler water regime is suggested by the absence of thermophyllic Tethyan forms, such as Nannoconus, and the presence of taxa that display bipolar distribution, such as Crucibiscutum salebrosum. Two new species, Zeugrhabdotus cooperi and Cyclagelosphaera argoensis, and one new combination, Haqius ellipticus are described.