124 resultados para 964
Resumo:
The Global River Discharge (RivDIS) data set contains monthly discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station, with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles Voromarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the University of New Hampshire. River discharge is typically measured through the use of a rating curve that relates local water level height to discharge. This rating curve is used to estimate discharge from the observed water level. The rating curves are periodically rechecked and recalibrated through on-site measurement of discharge and river stage.
Resumo:
This study of the interstitial water concentration-depth distributions of iodide, bromide, boron, d11B, and dissolved organic carbon, as represented by absorbance at 325 nm (yellow substance: YS) and laser-induced fluorescence (LIF), is a follow-up of the extensive shipboard program of interstitial water analysis during ODP Leg 131. Most of the components studied are associated with processes involving the diagenesis of organic matter in these sediments. Three zones of the sediment column are discussed separately because of the different processes involved in causing concentration changes: 1. The upper few hundreds of meters: In this zone, characterized by very high sedimentation rates (>1200 m/m.y.), interstitial waters show very sharp increases in alkalinity, ammonia, iodide, bromide, YS, and LIF, mainly as a result of the diagenesis of organic carbon; 2. Whereas below 200 mbsf concentration gradients all show a decreasing trend, the zone at ~ 365 mbsf is characterized by concentration reversals, mainly due to the recent emplacement of deeper sediments above this depth as a result of thrust-faulting; 3. The décollement zone (945-964 mbsf) is characterized by concentration anomalies in various constituents (bromide, boron, d11B, manganese, LIF). These data are interpreted as resulting from an advective input of fluids along the zone of décollement as recent as ~ 200 ka. Possibly periodic inputs of anomalous fluids still seem to occur along this décollement zone.