616 resultados para 94-607


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages from northeast Atlantic DSDP Sites 609, 610, and 611 have been interpreted with reference to modern assemblages known to be linked with the overlying bottom-water masses. It is shown that the water masses in the late Miocene to Pleistocene were similar to those of today. The distribution of the water masses changed with time, however. Antarctic Bottom Water ("AABW"), which at present is restricted to the area south of the Azores, reached as far north as the Gibbs Fracture Zone in the early Pliocene. Increased production of North Atlantic Deep Water in the late Pliocene displaced the AABW to the south

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All holes drilled during Leg 114 contained ice-rafted debris. Analysis of samples from Hole 699A, Site 701, and Hole 704A yielded a nearly complete history of ice-rafting episodes. The first influx of ice-rafted debris at Site 699, on the northeastern slope of the Northeast Georgia Rise, occurred at a depth of 69.94 m below seafloor (mbsf) in sediments of early Miocene age (23.54 Ma). This material is of the same type as later ice-rafted debris, but represents only a small percentage of the coarse fraction. Significant ice-rafting episodes occurred during Chron 5. Minor amounts of ice-rafted debris first reached Site 701, on the western flank of the Mid-Atlantic Ridge (8.78 Ma at 200.92 mbsf), and more arrived in the late Miocene (5.88 Ma). The first significant quantity of sand and gravel appeared at a depth of 107.76 mbsf (4.42 Ma). Site 704, on the southern part of the Meteor Rise, received very little or no ice-rafted debris prior to 2.46 Ma. At this time, however, the greatest influx of ice-rafted debris occurred at this site. This time of maximum ice rafting correlates reasonably well with influxes of ice-rafted debris at Sites 701 (2.24 Ma) and 699 (2.38 Ma), in consideration of sample spacing at these two sites. These peaks of ice rafting may be Sirius till equivalents, if the proposed Pliocene age of Sirius tills can be confirmed. After about 1.67 Ma, the apparent mass-accumulation rate of the sediments at Site 704 declined, but with major fluctuations. This decline may be the result of a decrease in the rate of delivery of detritus from Antarctica due to reduced erosive power of the glaciers or a northward shift in the Polar Front Zone, a change in the path taken by the icebergs, or any combination of these factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small biserial foraminifera were abundant in the early Miocene (ca. 18.9-17.2 Ma) in the eastern Atlantic and western Indian Oceans, but absent in the western equatorial Atlantic Ocean, Weddell Sea, eastern Indian Ocean, and equatorial Pacific Ocean. They have been assigned to the benthic genus Bolivina, but their high abundances in sediments without evidence for dysoxia could not be explained. Apertural morphology, accumulation rates, and isotopic composition show that they were planktic (genus Streptochilus). Living Streptochilus are common in productive waters with intermittent upwelling. The widespread early Miocene high Streptochilus abundances may reflect vigorous but intermittent upwelling, inducing high phytoplankton growth rates. However, export production (estimated from benthic foraminiferal accumulation rates) was low, possibly due to high regeneration rates in a deep thermocline. The upwelled waters may have been an analog to Subantarctic Mode Waters, carrying nutrients into the eastern Atlantic and western Indian Oceans as the result of the initiation of a deep-reaching Antarctic Circumpolar Current, active Agulhas Leakage, and vigorous vertical mixing in the Southern Oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution records (2 7 kyr) of Upper Pliocene Discoaster abundances obtained from six ODP/DSDP sites are assessed independently using oxygen isotope stratigraphy. Four Atlantic Ocean sites (DSDP Sites 552 and 607, and ODP Sites 659 and 662) comprise a transect from 56°N to 1°S and provide a record of latitudinal variations in Diseoaster biogeography. Low-latitude sites in the Atlantic (ODP Site 662), Pacific (ODP Site 677), and Indian (ODP Site 709) oceans provide additional information about variability in Discoaster abundance patterns within the equatorial region. A common chronology, based on the astronomical time scale developed for ODP Site 677, has been established for all the sites. By integrating oxygen isotope data and Discoaster abundance records at each site we are able to independently evaluate the temporal and spatial distribution of D. brouweri and D. triradiatus in the 500 kyr prior to the extinction of the discoasters near the base of the Olduvai subchron. Major decreases in abundance are evident during some of the more intense late Pliocene glacial events. In particular, glacial isotope stages 82, 96, 98 and 100 are associated with distinct abundance minima. At these times, large-scale changes in surface hydrographic conditions appear to have suppressed Discoaster numbers on a global scale. The increase in abundance of D. triradiatus, which precedes the extinction of the discoasters by around 200 kyr, may also be related to the intensification of environmental pressures that accompanied the build-up of Northern Hemisphere ice sheets during the late Pliocene. In spite of contrasting geographic and oceanographic settings, the various D. brouweri and D. triradiatus records are remarkably similar. This demonstrates that the acme and extinction events are excellent biostratigraphic datums. The simultaneous extinction of D. brouweri and D. triradiatus at 1.95 Ma were synchronous events at both a regional scale within the Atlantic, and on a global scale between the three major oceans. However, the start of the D. triradiatus acme appears to have been diachronous, occurring some 40 kyr earlier in the Atlantic than in the Indo-Pacific, and hence the stratigraphic usefulness of this datum is regional rather than global.