410 resultados para 846
Resumo:
Cretaceous basalts recovered during Ocean Drilling Program Leg 183 at Site 1137 on the Kerguelen Plateau show remarkable geochemical similarities to Cretaceous continental tholeiites located on the continental margins of eastern India (Rajmahal Traps) and southwestern Australia (Bunbury basalt). Major and trace element and Sr-Nd-Pb isotopic compositions of the Site 1137 basalts are consistent with assimilation of Gondwanan continental crust (from 5 to 7%) by Kerguelen plume-derived magmas. In light of the requirement for crustal contamination of the Kerguelen Plateau basalts, we re-examine the early tectonic environment of the initial Kerguelen plume head. Although a causal role of the Kerguelen plume in the breakup of Eastern Gondwana cannot be ascertained, we demonstrate the need for the presence of the Kerguelen plume early during continental rifting. Activity resulting from interactions by the newly formed Indian and Australian continental margins and the Kerguelen plume may have resulted in stranded fragments of continental crust, isolated at shallow levels in the Indian Ocean lithosphere.
Resumo:
Changes in circulation associated with the shoaling of the Isthmus of Panama and the Caribbean carbonate crash in the Miocene were investigated using Nd isotopes from fossil fish teeth and debris from two sites in the Caribbean Basin (Ocean Drilling Program Sites 998 and 999) and two sites in the eastern equatorial Pacific (Sites 846 and 1241). The total range for e-Nd values measured from 18 to 4.5 Ma in the Caribbean is -7.3 to 0. These values are higher than Atlantic water masses (~-11) and range up to values equivalent to contemporaneous Pacific water masses, confirming that flow into the Caribbean Basin was composed of a mixture of Pacific and Atlantic waters, with an upper limit of almost pure Pacific-sourced waters. Throughout the Caribbean record, particularly during the carbonate crash (10-12 Ma), low carbonate mass accumulation rates (MARs) correlate with more radiogenic e-Nd values, indicating increased flow of corrosive Pacific intermediate water into the Caribbean Basin during intervals of dissolution. This flow pattern agrees with results from general ocean circulation models designed to study the effect of the shoaling of the Central American Seaway. Low carbonate MARs and high e-Nd values also correlate with intervals of increased Northern Component Water production and, therefore, enhanced conveyor circulation, suggesting that the conveyor may respond to changes in circulation associated with shoaling of the Central American Seaway. Reduced Pacific throughflow related to shoaling of the seaway led to a gradual increase in carbonate preservation and more Atlantic-like e-Nd values following the carbonate crash.
Resumo:
We use sediment cores from the South Tasman Rise (STR) to reconstruct deep- water circulation in the southwest Pacific sector of the Southern Ocean. Sediment cores MD972106 (45° 09' S, 146° 17' E, 3310 m water depth) and GC34 (45° 06' S, 147° 45' E, 4002 m water depth) preserve records covering the last 160 kyr, with chronology controlled by calibrated accelerator mass spectrometry radiocarbon dates and benthic foraminiferal d18O tied to SPECMAP. The STR benthic foraminiferal d13C records provide new d13C values for Southern Ocean deep water spanning the last 160 kyr at sites unlikely to be affected by variations in productivity. The records establish that glacial benthic foraminifera (Cibicidoides spp.) d13C values are lower relative to interglacial values and are comparable to previous glacial benthic d13C records in the Indian and Pacific sectors of the Southern Ocean. Comparisons of the benthic foraminiferal d13C time series at the STR are made with the equatorial Pacific (V19-30 and Site 846) and the equatorial Atlantic (GeoB1115). The similarity of benthic d13C records at the STR to the equatorial Pacific suggest the Southern Ocean deep-water mass closely tracked those of the deep Pacific, and the presence of a d13C gradient between the STR and the equatorial Atlantic suggests there was continual production of northern source deep water over the past 160 kyr.