655 resultados para 38-346
Resumo:
The Neogene sediments from DSDP site 341 on the Voring Plateau, Norwegian Sea, contain a thin glauconitic pellet-bearing subunit, which separates underlying pelagic clays from overlying glacial-marine sediments. Oxygen isotope measurements of benthic foraminifera show a delta18O shift of + 1? during deposition of this subunit, probably a combined effect of a drop in bottom water temperature and a rise in seawater delta18O. The chronology of this sedimentological and O isotope transition is, however, poorly constrained by fossil evidence. Rb-Sr dating of glauconitic pellets indicates that the lower part of the glauconitic subunit was deposited 11.6 +/- 0.2 Ma ago. Further geochronological evidence, derived from the Sr and C isotopic compositions of foraminifera compared with known seawater-time variations, indicates that the lower pelagic clays are early to middle Miocene, deposited at a mean rate of ~15 m/Ma. The glauconitic subunit contains part of the middle Miocene and probably all of the late Miocene in a condensed sequence with a very low mean depositional rate (~0.2 m/Ma). The overlying glacial marine sediments are probably Pliocene, with a high mean rate of deposition, ~45 m/Ma. This is the first application of C, O and Sr isotopic stratigraphy combined with Rb-Sr dating of glauconitic minerals, and it illustrates the applications of this integrated approach in geochronology.
Resumo:
The modern depositional environment of the deep Norwegian-Greenland Sea is highly asymmetric in an E-W direction because of the hydrography of the surface water masses and because of the more or less permanent pack ice cover of the East Greenland Current regime along the Greenland continental margin. By means of sedimentation rates we have tried to investigate whether this hydrographic asymmetry influenced the sediment input to the Norwegian-Greenland Sea over the past 60 m.y. Sediment input can be quantified if thicknesses of sediment sections accumulated over known time intervals can be measured and if some of their physical properties have been determined. Sedimentation rates have been estimated for Tertiary and Quaternary times, and their temporal as well as their spatial changes are discussed. Basin structure and morphology exerted an important influence on sediment distribution. During the Early Tertiary major sediment source regions in the southern Barents Sea and to the north and west of Iceland could be identified; these source regions supplied the bulk of the sediment fill of the Norwegian-Greenland Sea. Since inception of a "glacial" type sedimentation major elements of the sea surface circulation seem to have controlled the sediment input into this polar and subpolar deep-sea basin.