457 resultados para 168-1029A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical model of sulfate reduction and isotopic fractionation has been applied to pore fluid SO4**2- and d34S data from four sites drilled during Ocean Drilling Program (ODP) Leg 168 in the Cascadia Basin at 48°N, where basement temperatures reach up to 62°C. There is a source of sulfate both at the top and the bottom of the sediment column due to the presence of basement fluid flow, which promotes bacterial sulfate reduction below the sulfate minimum zone at elevated temperatures. Pore fluid d34S data show the highest values (135 per mil) yet found in the marine environment. The bacterial sulfur isotopic fractionation factor, a, is severely underestimated if the pore fluids of anoxic marine sediments are assumed to be closed systems and Rayleigh fractionation plots yield erroneous values for a by as much as 15 per mil in diffusive and advective pore fluid regimes. Model results are consistent with a = 1.077+/-0.007 with no temperature effect over the range 1.8 to 62°C and no effect of sulfate reduction rate over the range 2 to 10 pmol/ccm/day. The reason for this large isotopic fractionation is unknown, but one difference with previous studies is the very low sulfate reduction rates recorded, about two orders of magnitude lower than literature values that are in the range of µmol/ccm/day to tens of nmol/ccm/day. In general, the greatest 34S depletions are associated with the lowest sulfate reduction rates and vice versa, and it is possible that such extreme fractionation is a characteristic of open systems with low sulfate reduction rates.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pore water and turnover rates were determined for surface sediment cores obtained in 2009 and 2010. The pore water was extracted with Rhizons (Rhizon CSS: length 5 cm, pore diameter 0.15 µm; Rhizosphere Research Products, Wageningen, Netherlands) in 1 cm-resolution and immediately fixed in 5% zinc acetate (ZnAc) solution for sulfate, and sulfide analyses. The samples were diluted, filtered and the concentrations measured with non-suppressed anion exchange chromatography (Waters IC-Pak anion exchange column, waters 430 conductivity detector). The total sulfide concentrations (H2S + HS- + S**2-) were determined using the diamine complexation method (doi:10.4319/lo.1969.14.3.0454). Samples for dissolved inorganic carbon (DIC) and alkalinity measurements were preserved by adding 2 µl saturated mercury chloride (HgCl2) solution and stored headspace-free in gas-tight glass vials. DIC and alkalinity were measured using the flow injection method (detector VWR scientific model 1054) (doi:10.4319/lo.1992.37.5.1113). Dissolved sulfide was eliminated prior to the DIC measurement by adding 0.5 M molybdate solution (doi:10.4319/lo.1995.40.5.1011). Nutrient subsamples (10 - 15 ml) were stored at - 20 °C prior to concentration measurements with a Skalar Continuous-Flow Analyzer (doi:10.1002/9783527613984).