498 resultados para 130-807


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined the helium abundance and isotopic composition of seafloor carbonate sediments from the flanks of the Ontong Java Plateau, western equatorial Pacific Ocean (ODP Site 806). These results provide a two million year record of the burial flux of extraterrestrial 3He, which we believe is a proxy for the terrestrial accretion rate of interplanetary dust particles. The 3He burial flux prior to ~700 ka was relatively low, ~0.5 pcc/cm**2/kyr, but from 700 ka to the present, the burial flux gradually increased to a value of ~1.0 pcc/cm**2/kyr. 100 kyr periodicity in the 3He burial flux is apparent over the last 700 kyr and correlates with the oxygen isotope record of global climate, with high 3He burial fluxes associated with interglacial periods. This periodicity and phase are consistent with previous 3He measurements in North Atlantic sediments. Although 100 kyr periodicity in 3He burial flux is in agreement with recent predictions of the accretion rate of interplanetary dust based on a model of the orbital evolution of asteroidal debris, the measurements and predictions differ by one half cycle in phase. Nevertheless, our observations suggest the terrestrial accretion rate of interplanetary dust is controlled by orbital eccentricity and/or inclination relative to the solar-system invariable plane. Such control is a necessary but not sufficient condition for the hypothesis of that variations in extraterrestrial dust accretion modulates terrestrial climate with a 100 kyr period. We also identify several brief (<25 kyr) intervals of strongly enhanced 3He burial, possibly related to random and transient fluctuations in the accretion rate of asteroidal or cometary dust particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basement rocks from the Ontong Java Plateau are tholeiitic basalts that appear to record very high degrees of partial melting, much like those found today in the vicinity of Iceland. They display a limited range of incompatible element and isotopic variation, but small differences are apparent between sampled sites and between upper and lower groups of flows at Ocean Drilling Program Site 807.40Ar-39Ar ages of lavas from Site 807 and Deep Sea Drilling Project Site 289 are indistinguishable about an early Aptian mean of 122 Ma (as are preliminary data for the island of Malaita at the southern edge of the plateau), indicating that plateau-building eruptions ended more or less simultaneously at widely separated locations. Pb-Nd-Sr isotopes for lavas from Sites 289, 803, and 807, as well as southern Malaita, reflect a hotspot-like source with epsilon-Nd(T) = +4.0 to +6.3, (87Sr/86Sr)T = 0.70423-0.70339, and 206Pb/204Pb = 18.245-18.709 and possessing consistently greater 208Pb/204Pb for a given 206Pb/204Pb than Pacific MORB. The combination of hotspot-like mantle source, very high degrees of melting, and lack of a discernible age progression is best explained if the bulk of the plateau was constructed rapidly above a surfacing plume head, possibly that of the Louisville hotspot. Basalt and feldspar separates indicate a substantially younger age of ~90 Ma for basement at Site 803; in addition, volcaniclastic layers of mid-Cenomanian through Coniacian age occur at DSDP Site 288, and beds of late Aptian-Albian age are found at Site 289. Therefore, at least some volcanism continued on the plateau for 30 m.y. or more. The basalts at Site 803 are chemically and isotopically very similar to those at the ~122 Ma sites, suggesting that hot plume-type mantle was present beneath the plateau for an extended period or at two different times. Surviving seamounts of the Louisville Ridge formed between 70 and 0 Ma have much higher 206Pb/204Pb than any of the plateau basalts. Thus, assuming the Louisville hotspot was the source of the plateau lavas, a change in the hotspot's isotopic composition may have occurred between roughly 70 and 90 Ma; such a change may have accompanied the plume-head to plume-tail transition. Similar shifts from early, lower 206Pb/204Pb to subsequently higher 206Pb/204Pb values are found in several other oceanic plateau-hotspot and continental flood basalt-hotspot systems, and could reflect either a reduction in the supply of low 206Pb/204Pb mantle or an inability of some off-ridge plume-tails to melt refractory low 206Pb/204Pb material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light greenish gray and pale purple color bands are common in the ooze and chalk of the Ontong Java Plateau. Analyses of Pleistocene and Pliocene ooze samples that contain abundant bands indicate that the purple bands are colored by finely disseminated iron sulfide, whereas the green bands are colored by finely disseminated Fe- and Al-bearing silicates (probably clays). No local contrasts in the total organic carbon contents, carbon and oxygen isotopic compositions, and grain sizes were found. Band abundances, counted from core photographs of all Leg 130 holes, can be correlated from hole to hole on the basis of age rather than depth. The temporal distribution of these color bands is also comparable with that of the green bands described from the Lord Howe Rise, which were previously interpreted as products of altered volcanic glass. This may indicate that the green and purple bands on the Ontong Java Plateau originate from the early alteration of volcanic ash. The crosscutting relationships between the green and purple bands and original structures in the host sediment indicate that the bands have been locally altered by redox conditions in the sediments after the bands were formed.