579 resultados para 125-786B


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New geochemical data on serpentinite muds and metamorphic clasts recovered during Ocean Drilling Program Legs 195 (Holes 1200A-1200E) and 125 (Holes 778A and 779A) provide insights into the proportions of rock types of various sources that compose the serpentinite mudflows and the fluid-rock interactions that predominate in these muds. We interpret the metamorphic rock fragments as derivatives of mostly metamorphosed mafic rocks from the descending Pacific oceanic crust. Based on their mid-ocean-ridge basalt (MORB)-like Al2O3, TiO2, CaO, Si/Mg, and rare earth element (REE) systematics, these metamorphic rocks are classified as metabasalts/metagabbros and, therefore, ~30-km depths represent an active subduction zone setting. The serpentinite muds from Holes 1200A and 1200E have slightly lower REE when compared to Hole 1200D, but overall the REE abundance levels range between 0.1-1 x chondrite (CI) levels. The chondrite-normalized patterns have [La/Sm]N ~ 2.3 and [Sm/Yb]N ~ 2. With the exception of one sample, the analyzed metamorphic clasts show flat to slightly depleted light REE patterns with 1.0-15 x CI levels, resembling MORBs. Visually, ~6 vol% of the serpentinized muds are composed of 'exotic' materials (metamorphic clasts [schists]). Our mixing calculations confirm this result and show that the serpentinite muds are produced by additions of ~5% metamafic materials (with flat and up to 10 x CI REE levels) to serpentinized peridotite clast material (with very low REE abundances and U-shaped chondrite-normalized patterns). The preferential incorporation of B, Cs, Rb, Li, As, Sb, and Ba into the structure of H2O-bearing sheet silicates (different than serpentine) in the Leg 125 and Leg 195 metamorphic clasts (chlorite, amphibole, and micas) have little effect on the overall fluid-mobile element (FME) enrichments in the serpentinite muds (average B = ~13 ppm; average Cs = ~0.05 ppm; average As = ~1.25 ppm). The extent of FME enrichment in the serpentinized muds is similar to that described for the serpentinized peridotites, both recording interaction with fluids very rich in B, Cs, and As originating from the subducting Pacific slab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed Nd and Sr isotopic compositions of Neogene fossil fish teeth from two sites in the Pacific in order to determine the effect of cleaning protocols and burial diagenesis on the preservation of seawater isotopic values. Sr is incorporated into the teeth at the time of growth; thus Sr isotopes are potentially valuable for chemostratigraphy. Nd isotopes are potential conservative tracers of paleocirculation; however, Nd is incorporated post-mortem, and may record diagenetic pore waters rather than seawater. We evaluated samples from two sites (Site 807A, Ontong Java Plateau and Site 786A, Izu-Bonin Arc) that were exposed to similar bottom waters, but have distinct lithologies and pore water chemistries. The Sr isotopic values of the fish teeth appear to accurately reflect contemporaneous seawater at both sites. The excellent correlation between the Nd isotopic values of teeth from the two sites suggests that the Nd is incorporated while the teeth are in chemical equilibrium with seawater, and that the signal is preserved over geologic timescales and subsequent burial. These data also corroborate paleoseawater Nd isotopic compositions derived from Pacific ferromanganese crusts that were recovered from similar water depths (Ling et al., 1997; doi:10.1016/S0012-821X(96)00224-5). This corroboration strongly suggests that both materials preserve seawater Nd isotope values. Variations in Pacific deepwater e-Nd values are consistent with predictions for the shoaling of the Isthmus of Panama and the subsequent initiation of nonradiogenic North Atlantic Deep Water that entered the Pacific via the Antarctic Circumpolar Current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling at Site 786, located in the center of the Izu-Bonin forearc basin, penetrated an apparently continuous section of middle Eocene/lower Oligocene volcaniclastic breccias and nannofossil oozes. Planktonic foraminiferal faunas underwent a gradual transition from relatively high-diversity middle Eocene through late Eocene tropical or warm-water assemblages to a cooler-water, less diverse assemblage during the early Oligocene. In the cosmopolitan benthic foraminiferal faunas, the major transition occurred during the early late Eocene. Middle Eocene benthic assemblages resembling the bathyal 'Lenticulina' fauna (characterized by Osangularia mexicana, Cibicidoides eocaenus, and several buliminid species) changed to an upper Eocene abyssal 'Globocassidulina subglobosa' fauna (characterized by Cibicidoides praemundulus, Globocassidulina subglobosa, Gyroidinoides girardanus, Oridorsalis umbonatus, and Siphonodosaria aculeata). Even though no large, abrupt faunal changes appear to have been associated with the assumed Eocene/Oligocene boundary, benthic species turnover continued through the late Eocene and into the early Oligocene. This resulted in a slightly lower diversity early Oligocene fauna dominated by three species: Laevidentalina sp., Bulimina jarvisi, and Gyroidinoides girardanus. The progression from a middle Eocene bathyal 'Lenticulina' fauna, rather than an abyssal 'Nuttallides truempyi' fauna, to an abyssal 'Globocassidulina subglobosa' fauna during the early late Eocene, suggests that a bathymetric deepening occurred at Site 786. Increased water depths may have resulted from tectonic subsidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (An89-90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE) or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from the serpentinized mantle peridotite above the metacrust. This "wedge serpentinite" presumably formed by fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths. The combined evidence from the Izu VF (?110 km above slab) and the outer forearc serpentinite seamounts (~25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc, and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu trench sediments and basaltic rocks appear preserved until arc front depths.