280 resultados para % dry weight
Resumo:
This data set contains aboveground community biomass (Sown plant community, measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested in September 2002 just prior to mowing (during peak standing biomass) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in one rectangle of 0.2 x 0.5 m per large plot. The location of the rectangle was assigned prior to harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangle within plots were identical for all plots. The harvested biomass was sorted into categories: in 2002 only individual species for the sown plant species were separated and processed. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
Vertical fluxes of phytoplankton (VF_phyto) and particulate organic carbon (VF_POC) in the White Sea were determined using seven long-term (292 to 296 days) sediment traps moored at five stations at depths 67 to 255 m. Annual VF_phyto and VF_POC ranged from 0.55 to 24.64 g C/m**2 and from 3.7 to 93.9 g C/m**2, respectively. The highest VF_phyto was observed in the Basin region located close to the Gorlo along the Tersk coast. Algal biomass accounted for 15-43% of VF_pOC. Diatoms comprised the most important group accounting for 83-100% in sinking biomass. Thalassiosira nordenskioeldii dominated in VF_phyto at all trap stations except for one in the Basin close to the Onega Bay, where Ditylum brightwellii was the most abundant.
Resumo:
The "15BO1997001" dataset is based on samples collected in the spring of 1997. The whole dataset is composed of 66 samples (from 27 stations of National Monitoring Sampling Grid) with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. The collected material was analysed using the method of Dimov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. The collected material was analysed using the method of Dimov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).
Resumo:
Oxygen and carbon isotope ratios were measured in benthic foraminifers from the entire Pliocene and latest Miocene sections of Site 846, a 180-m section, at a sampling interval of 10 cm. This provides a temporal resolution of about 2500 yr. The documented continuity of the record is excellent. Using the time scale that was developed on the basis of orbital tuning of GRAPE density records, we observed a fairly constant phase relationship between delta18O and variations in the obliquity of Earth's rotational axis. A new numbering scheme for Pliocene isotope stages is proposed. This high-resolution delta18O record clarifies several interesting aspects of late Neogene climatic evolution, including a "glacial" event that may have caused the final Messinian desiccation of the Mediterranean Sea; one or more "interglacial" events that might have caused refilling of the Mediterranean; a well-resolved couplet of glacial events at about the age of the Sidujfall Subchron; interglacial extremes in the early part of the Gauss that could have resulted from either significant deglaciation on Antarctica or from warming of deep water; and a gradual ramp of increasingly extreme "glacial" events, starting at about the Kaena Subchron and culminating with delta18O stage 100 in the earliest Matuyama.
Resumo:
This data set comprises a time series of aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice a year just prior to mowing (during peak standing biomass twice a year, generally in May and August; in 2002 only once in September) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in up to four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned by random selection of new coordinates every year within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
Data on the concentration and mineral composition of aerosols collected by nets in Cruise 18 of R/V Akadernik Fedorov on a submeridional section in the East Atlantic are presented. An empirical curve for calculating efficiency factor of a net is given for different concentrations of mineral part of aerosols. Fluxes of lithogenic part of aerosols to the sea surface are calculated. A comparison of lithogenic fluxes from the atmosphere and in the water column of the ocean showed that values of fluxes practically coincide in areas with dominating supply of dry atmospheric material. These fluxes strongly differ in the intratropical convergence zone, where deposition of aerosols depends on atmospheric precipitation, or in regions, where sedimentary material is supplied to the ocean mainly by river run-off. Residence time of aerosol lithogenic matter in the euphotic layer is calculated.