115 resultados para total body potassium


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on wintertime data collected from Baffin Bay and northern Davis Strait, a major gateway linking the Arctic with the subpolar North Atlantic, using narwhals (Monodon monoceros) as an oceanographic sampling platform. Fourteen narwhals were instrumented with satellite-linked time-depth-temperature recorders between 2005 and 2007. Transmitters collected and transmitted water column temperature profiles from each dive between December and April, where >90% of maximum daily dive depths reached the bottom. Temperature measurements were combined with 15 helicopter-based conductivity-temperature-depth (CTD) casts taken in April 2007 across central Baffin Bay and compared with hydrographic climatology values used for the region in Arctic climate models. Winter temperature maxima for whale and CTD data were in good agreement, ranging between 4.0°C and 4.6°C in inshore and offshore Baffin Bay and in Davis Strait. The warm Irminger Water was identified between 57°W and 59°W (at 68°N) between 200 and 400 m depths. Whale data correlated well with climatological temperature maxima; however, they were on average 0.9°C warmer ±0.6°C (P < 0.001). Furthermore, climatology data overestimated the winter surface isothermal layer thickness by 50-80 m. Our results suggest the previously documented warming in Baffin Bay has continued through 2007 and is associated with a warmer West Greenland Current in both of its constituent water masses. This research demonstrates the feasibility of using narwhals as ocean observation platforms in inaccessible Arctic areas where dense sea ice prevents regular oceanographic measurements and where innate site fidelity, affinity for winter pack ice, and multiple daily dives to >1700 m offer a useful opportunity to sample the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variability in metabolic scaling in animals, the relationship between metabolic rate ( R) and body mass ( M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased 50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hole 1256C was cored 88.5 m into basement, and Hole 1256D, the deep reentry hole, was cored 502 m into basement during Ocean Drilling Program Leg 206. Hole 1256D is located ~30 m south of Hole 1256C (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). A thick massive flow drilled in both holes, Units 1256C-18 and 1256D-1, consists of a single cooling unit of cryptocrystalline to fine-grained basalt, interpreted as a ponded lava, 32 m and at least 74.2 m thick, respectively. This ponded flow gives us a unique opportunity to examine textural variations from the glassy, folded crust of the lava pond recovered from the top of Unit 1256C-18 through the coarse-grained, thick massive lava body to the unusually recrystallized and deformed base cored in Unit 1256C-18. Some detailed descriptions of the textures and grain size variations through the lava pond (Units 1256C-18 and 1256D-1), with special reference to the recrystallization of the base of Unit 1256C-18, are presented here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe textural relationships in hydrated upper mantle peridotites emplaced at a nonconstructive ridge segment. Development of serpentinites and partially serpentinized peridotites takes place in four main stages: (1) pervasive serpentinization forming mainly lizardite, (2) a tensional stage forming chrysotile + talc + chlorite, (3) a deformational stage forming antigorite + tremolite, and (4) a late local tensional stage forming another generation of chrysotile veinlets. Mineral chemistry of serpentine pseudomorphs reflects in part primary mineral compositions. Olivine pseudomorphs are typically nickeliferous and depleted in aluminum and chromium. Orthopyroxene pseudomorphs have lower nickel contents and relatively high iron, aluminum, and chromium contents. Clinopyroxene pseudomorphs have very low nickel contents and relatively high aluminum and chromium contents. These chemical patterns in the serpentinites can be used to help discriminate between harzburgitic and lherzolitic protoliths. Oxygen isotopes and mineral parageneses suggest serpentine is derived from circulation of hydrothermal (200?C) fluids through the peridotite body. Crystallization of tremolite, talc, and chlorite may have occurred at temperatures up to 525?C if C02/H20 ratios were less than 0.25. Open fissures developing in aging upper mantle provide paths for important seawater circulation through a thin basaltic carapace down to shallow mantle rocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is currently under debate whether organisms that regulate their acid-base status under environmental hypercapnia demand additional energy. This could impair animal fitness, but might be compensated for via increased ingestion rates when food is available. No data are yet available for dominant Calanus spp. from boreal and Arctic waters. To fill this gap, we incubated C. glacialis at 390, 1120 and 3000 µatm for 16 days with Thalassiosira weissflogii (diatom) as food source on-board RV Polarstern in Fram Strait in 2012. Every four days copepods were sub-sampled from all CO2 treatments and clearance and ingestion rates were determined. During the SOPRAN mesocosm experiment in Bergen, Norway, 2011, we weekly collected C. finmarchicus from mesocosms initially adjusted to 390 and 3000 µatm CO2 and measured grazing at low and high pCO2. In addition, copepods were deep frozen for body mass analyses. Elevated pCO2 did not directly affect grazing activities and body mass, suggesting that the copepods did not have additional energy demands for coping with acidification, neither during long-term exposure nor after immediate changes in pCO2. Shifts in seawater pH thus do not seem to challenge these copepod species.