324 resultados para suspen-dome
Resumo:
To improve quantitative interpretation of ice core aeolian dust records a systematic methodical comparison has been made involving methods of water-insoluble particle counting (Coulter Counter and laser-sensing particle detector), soluble ions (ion chromatography, IC, and continuous flow analysis, CFA), elemental analysis (inductively coupled plasma mass spectroscopy, ICP-MS, at pH 1 and after full acid digestion), and water-insoluble elemental analysis (proton induced X-ray emission, PIXE). Ice core samples covering the last deglaciation have been used from the EPICA Dome C (EDC) and the EPICA Dronning Maud Land (EDML) ice cores. All methods correlate very well amongst each other. The ratios of glacial age concentrations to Holocene concentrations, which are typically a factor ~100, differ significantly between the methods, but differences are limited to a factor < 2 for most methods with insoluble particles showing the largest change. The recovery of ICP-MS measurements depends on the digestion method and is different for different elements and during different climatic periods. EDC and EDML samples have similar dust composition, which suggests a common dust source or a common mixture of sources for the two sites. The analysed samples further reveal a change of dust composition during the last deglaciation.
Resumo:
A 181 m deep ice core drilled in 1994/95 on the south dome of Berkner Island, Antarctica, was analyzed for stable isotopes, major ions and microparticle concentrations. Samples for ion chromatography were prepared by using a novel technique of filling decontaminated sample from a device for continuous ice-core melting directly into the sample vials. The core was dated through identification of volcanic horizons and interpolative layer counting. The core, together with a similar core from the north dome, reveals a 1000 year history of relatively stable climate. Temporal variations in the two cores deviate from each other owing to changing patterns of regional-scale circulation; the best correspondence between them is found for MSA-. delta18O, accumulation rate and a sea-salt proxy show only negligible correlation, which suggests a complex meteorological setting. Increasing annual accumulation is observed for the last 100 years. A period of increased sea-salt concentrations started around AD 1405, as has also been observed in other cores. Microparticle concentrations are on average 1220 particles (>=1.0 ?m diameter)/mL; they are enhanced from AD 1200 to 1350, possibly because of a higher atmospheric mineral dust load or because local volcanic activity was stronger than previously thought. Microparticles and NH4+show marked but multiple and very irregular sub-annual peaks; long-term stacking of 1 year data intervals yields seasonal maxima in austral spring or mid-summer, respectively. Post-depositional redistribution was observed for MSA, NO3- and F- at volcanic horizons.
Resumo:
The Bündnerschiefer of the Swiss-Italian Alps is a large sedimentary complex deposited on the Piemonte-Liguria and Valais oceans and associated continental margins from the upper Jurassic to Eocene. It is made of a large variety of sequences associated or not with an ophiolitic basement. The Bündnerschiefer makes an accretionary prism that developed syn-tectonically from the onset of alpine subduction, and it records orogenic metamorphism following episodes of HP metamorphism. The Bündnerschiefer shares important similarities with the Otago schists of New Zealand and with the Wepawaug schists of Connecticut, both of which form accretionary prisms and have an orogenic metamorphic imprint. With the aim of testing the hypothesis of mobility of chemical components as a function of metamorphic grade, in this work I present fifty-five bulk chemical analyses of various lithological facies of the Bündnerschiefer collected along the well-studied field gradient of the Lepontine dome of Central Switzerland, in the Prättigau half window of East Switzerland, and in the Tsaté Nappe of Valle d'Aosta (Italy). The dataset includes the concentration of major components, large ion lithophile elements (Rb, Sr, Ba, Cs), high field strength elements (Zr, Ti, Nb, Th, U, Ta, Hf), fluid-mobile light elements (B, Li), volatiles (CO2, S), REEs, and Y, V, Cr, Co, Sn, Pb, Cu, Zn, Tl, Sb, Be, and Au. These data are compared against the compositions of the global marine sediment reservoir, typical crustal reservoirs, and against the previously measured compositions of Otago and Wepawaug schists. Results reveal that, irrespective of their metamorphic evolution, the bulk chemical compositions of orogenic metasediments are characterized by mostly constant compositional ratios (e.g., K2O/Al2O3, Ba/Al2O3, Sr/CaO, etc.), whose values in most cases are undistinguishable from those of actual marine sediments and other crustal reservoirs. For these rocks, only volatile concentrations decrease dramatically as a function of metamorphic temperature, and significant deviations from the reservoir signatures are evident for SiO2, B, and Li. These results are interpreted as an indication of residual enrichment in the sediments, a process taking place during syn-metamorphic dehydration from the onset of metamorphism in a regime of chemical immobility. Residual enrichment increased the absolute concentrations of the chemical components of these rocks, but did not modify significantly their fundamental ratios. This poor compositional modification of the sediments indicates that orogenic metamorphism in general does not promote significant mass transfer from accretionary prisms. In contrast, mass transfer calculations carried out in a shear zone crosscutting the Bündnerschiefer shows that significant mass transfer occurs within these narrow zones, resulting in gains of H2O, SiO2, Al2O3, K2O, Ba, Y, Rb, Cu, V, Tl, Mo, and Ce during deformation and loss of Na2O, CO2, S, Ni, B, U, and Pb from the rock. These components were presumably transported by an aquo-carbonic fluid along the shear zone. These distinct attitudes to mobilize chemical elements from orogenic sediments may have implications for a potentially large number of geochemical processes in active continental margins, from the recycling of chemical components at plate margins to the genesis of hydrothermal ore deposits.
Resumo:
Atmospheric fluxes of iron (Fe) over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.
Resumo:
We report a decadally resolved record of atmospheric CO2 concentration for the last 1000 years, obtained from the West Antarctic Ice Sheet (WAIS) Divide shallow ice core. The most prominent feature of the pre-industrial period is a rapid ~7 ppm decrease of CO2 in a span of ~20-50 years at ~1600 A.D. This observation confirms the timing of an abrupt atmospheric CO2 decrease of ~10 ppm observed for that time period in the Law Dome ice core CO2 records, but the true magnitude of the decrease remains unclear. Atmospheric CO2 variations over the time period 1000-1800 A.D. are statistically correlated with northern hemispheric climate and tropical Indo-Pacific sea surface temperature. However, the exact relationship between CO2 and climate remains elusive due to regional climate variations and/or uneven geographical data density of paleoclimate records. We observe small differences of 0 ~2% (0 ~ 6 ppm) among the high-precision CO2 records from the Law Dome, EPICA Dronning Maud Land and WAIS Divide Antarctic ice cores. However, those records share common trends of CO2 change on centennial to multicentennial time scales, and clearly show that atmospheric CO2 has been increasing above preindustrial levels since ~1850 A.D.
Resumo:
Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to not, vert, similar ~103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng/l range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng/l while between 0.5 and 5 ng/l accuracy and precision are element dependent.