869 resultados para spent zinc manganese dioxide batteries
Resumo:
A geochemical analysis is conducted on hemipelagic sediments at ODP Leg 162, Site 907, North Atlantic. On the basis of major and minor element concentrations, the sequence is divided into five units. Geochemical data reveal that the sediments originated from two specific source areas, i.e., continental icerafted debris (IRD) and Icelandic basalt. In the upper part (lithological units I and II, 0 to 63.1 meters below sea floor (mbsf)), sediments were derived from continental IRD, whereas in the lower part, sediments (lithological units III, IV, and V, below 63.1 mbsf) comprise mixture of continental IRD and minor supply from the Icelandic basalt. The ratio of TiO2/Al2O3 to SiO2 content and the Th to Ti/Al molar ratio clearly provide a key to discriminate provenances. The change in source area is most likely related to the oceanographic and climatic evolution in the North Atlantic since the middle Miocene. Biogenic fossil-barren intervals (Units II and V) are considered as a consequence of dissolution caused by oceanic circulation. The timing of IRD initiation confers with that of geochemical analysis. Total organic carbon to total nitrogen (C/N) ratio shows a striking variation in the entire core. The C/N ratios exceed 10 below approximately 196 mbsf (lithological unit V) with a gradual downward increase. This suggests that terrigenous organic matters have been supplied from the neighboring continents. The total organic carbon to total sulfur (C/S) ratio also shows such possibility as well as diagenetic changes in Units IV and V. The carbonate-barren intervals presented in Units II and V, and intermittently in Units III and IV are interpreted as a consequence of dissolution effect related with climatic variation and deep-water circulation. Additional low surface productivity was considerable.
Resumo:
Current understanding of rare earth element (REE) geochemistry in the ocean is given in the book. Chemical properties determining REE migration ability in natural processes, sources of REE in the ocean, behavior of REE in river-sea mixing zones, fractionation of dissolved and particulate REE in ocean waters under aerobic and anaerobic conditions, distribution of REE in terrigenous, authigenic, hydrothermal and biogenic sediment components (clay, bone detritus, barite, phillipsite, Fe- and Mn-oxyhydroxides, Fe-Ca hydroxophosphate, diatoms and foraminiferas) are under consideration.
Resumo:
Microbial communities and their associated metabolic activity in marine sediments have a profound impact on global biogeochemical cycles. Their composition and structure are attributed to geochemical and physical factors, but finding direct correlations has remained a challenge. Here we show a significant statistical relationship between variation in geochemical composition and prokaryotic community structure within deep-sea sediments. We obtained comprehensive geochemical data from two gravity cores near the hydrothermal vent field Loki's Castle at the Arctic Mid-Ocean Ridge, in the Norwegian-Greenland Sea. Geochemical properties in the rift valley sediments exhibited strong centimeter-scale stratigraphic variability. Microbial populations were profiled by pyrosequencing from 15 sediment horizons (59,364 16S rRNA gene tags), quantitatively assessed by qPCR, and phylogenetically analyzed. Although the same taxa were generally present in all samples, their relative abundances varied substantially among horizons and fluctuated between Bacteria- and Archaea-dominated communities. By independently summarizing covariance structures of the relative abundance data and geochemical data, using principal components analysis, we found a significant correlation between changes in geochemical composition and changes in community structure. Differences in organic carbon and mineralogy shaped the relative abundance of microbial taxa. We used correlations to build hypotheses about energy metabolisms, particularly of the Deep Sea Archaeal Group, specific Deltaproteobacteria, and sediment lineages of potentially anaerobic Marine Group I Archaea. We demonstrate that total prokaryotic community structure can be directly correlated to geochemistry within these sediments, thus enhancing our understanding of biogeochemical cycling and our ability to predict metabolisms of uncultured microbes in deep-sea sediments.
Resumo:
Petrographic description as well as data on chemical composition and K-Ar age of basalts from the floor of the Indian Ocean are reported in the paper.
Resumo:
Data on internal structure, distribution, and chemical composition of iron-manganese nodules from the central part of the South Pacific are reported. Nodules with relatively high contents of Fe, Ti, Co, and Pb were found. Formation of these nodules in pelagic regions of the ocean with low sedimentation rates is tentatively ascribed by the authors to leaching of Fe, Mn, and some minor elements during submarine lava outflow and to geochemical mobility of these elements. The role of diagenetic re-distribution of ore elements during formation of nodules is also discussed.
Resumo:
The book deals with behavior of phosphorus and its concentration in oceanic phosphorites. The major stages of marine geochemical cycle of phosphorus including its supply to sedimentary basins, precipitation from sea water, distribution and speciation in bottom sediments, diagenetic redistribution, and relation to other elements are under consideration. Formation of recent phosphorites as a culmination of phosphate accumulation in marine and oceanic sediments is examined. Distribution, structure, mineral and chemical compositions of major phosphorite deposits of various age on continental margins, as well as on submarine plateaus, uplifts and seamounts and some islands are described. A summary of trace element abundances in oceanic phosphorites is presented. Problems of phosphorite origin are discussed.
Resumo:
Calcareous and siliceous biogenic components have been studied in deep-water iron-manganese nodules from the northern and southern Pacific Ocean. Calcareous material consists of foraminifera remains, calcareous algae, and coccolithophorids, whereas siliceous material consists of remains of radiolarians and diatoms, as well as sponge spicules. Structures similar in morphology to coccal and filiform bacteria have been found in both outer and inner sections of the nodules indicating that microorganisms may be directly or indirectly involved in their development.