686 resultados para sediment transport
Resumo:
Terrigenous sediment supply, marine transport, and depositional processes along tectonically active margins are key to decoding turbidite successions as potential archives of climatic and seismic forcings. Sequence stratigraphic models predict coarse-grained sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine siliciclastic deposition during transgressions and highstands has been attributed to sustained connectivity between terrigenous sources and marine sinks facilitated by narrow shelves. To decipher the controls on Holocene highstand turbidite deposition, we analyzed 12 sediment cores from spatially discrete, coeval turbidite systems along the Chile margin (29° - 40°S) with changing climatic and geomorphic characteristics but uniform changes in sea level. Sediment cores from intraslope basins in north-central Chile (29° - 33°S) offshore a narrow to absent shelf record a shut-off of turbidite deposition during the Holocene due to postglacial aridification. In contrast, core sites in south-central Chile (36° - 40°S) offshore a wide shelf record frequent turbidite deposition during highstand conditions. Two core sites are linked to the Biobío river-canyon system and receive sediment directly from the river mouth. However, intraslope basins are not connected via canyons to fluvial systems but yield even higher turbidite frequencies. High sediment supply combined with a wide shelf and an undercurrent moving sediment toward the shelf edge appear to control Holocene turbidite sedimentation and distribution. Shelf undercurrents may play an important role in lateral sediment transport and supply to the deep sea and need to be accounted for in sediment-mass balances.
Resumo:
Siliciclastic turbidites represent huge volumes of sediments, which are of particular significance for (1) petroleum researchers, interested in their potential as oil reservoirs and (2) sedimentologists, who aim at understanding sediment transport processes from continent to deep-basins. An important challenge when studying marine turbidites has been to establish a reliable chronology for the deposits. Indeed, conventional marine proxies applied to hemipelagic sediments are often unreliable in detrital clays. In siliciclastic turbidites, those proxies can be used only in hemipelagic intervals, providing a poor constraint on their chronology. In this study, we have used sediments from the Rhône Neofan (NW Mediterranean Sea) to demonstrate that pollen grains can provide a high-resolution chronostratigraphical framework for detrital clays in turbidites. Vegetation changes occurring from the end of Marine Isotopic Stage 3 to the end of Marine Isotopic Stage 2 (from ~30 to ~18 ka cal. BP) are clearly recorded where other proxies have failed previously, mainly because the scarcity of foraminifers in these sediments prevented any continuous Sea Surface Temperature (SST) record and radiocarbon dating to be obtained. We show also that the use of palynology in turbidite deposits is able to contribute to oceanographical and sedimentological purposes: (1) Pinus pollen grains can document the timing of sea-level rise, (2) the ratio between pollen grains transported from the continent via rivers and dinoflagellate cysts (elutriating) allows us to distinguish clearly detrital sediments from pelagic clays. Finally, taken together, all these tools show evidence that the Rhône River disconnected from the canyon during the sea-level rise and thus evidence the subsequent rapid starvation of the neofan at 18.5 ka cal. BP. Younger sediments are hemipelagic: the frequency of foraminifers allowed to date sediments with radiocarbon. First results of Sea Surface Temperature obtained on foraminifers are in good agreement with the dinoflagellate cysts climatic signal. Both provide information on the end of the deglaciation and the Holocene.
Resumo:
Aeolian and fluvial sediment transport to the Atlantic Ocean offshore Mauritania were reconstructed based on grain-size distributions of the carbonate-free silt fraction of three marine sediment records of Cap Timiris Canyon to monitor the climatic evolution of present-day arid north-western Africa. During the late Pleistocene, predominantly coarse-grained particles, which are interpreted as windborne dust, characterise glacial dry climate conditions with a low sea level and extended sand seas that reach onto the exposed continental shelf off Mauritania. Subsequent particle fining and the abrupt decrease in terrigenous supply are attributed to humid climate conditions and dune stabilisation on the adjacent African continent with the onset of the Holocene humid period. Indications for an ancient drainage system, which was discharging fluvial mud offshore via Cap Timiris Canyon, are provided by the finest end member for early to mid Holocene times. However, in comparison to the Senegal and Niger River further south, the river system connecting Cap Timiris Canyon with the Mauritanian hinterland was starved during the late Holocene and is non-discharging under present-day arid climate conditions.
Resumo:
Geomorphic process units have been derived in order to allow quantification via GIS techniques at a catchment scale. Mass movement rates based on existing field measurements are employed in the budget calculations. In the Kärkevagge catchment, Northern Sweden, 80% of the area can be identified either as a source area for sediments or as a zone where sediments are deposited. The overall budget for the slopes beneath the rockwalls in the Kärkevagge is approximately 680 t/a whilst about 150 t a-1 are transported into the fluvial system.
Resumo:
Excess Thorium-230 (230Thxs) as a constant flux tracer is an essential tool for paleoceanographic studies, but its limitations for flux normalization are still a matter of debate. In regions of rapid sediment accumulation, it has been an open question if 230Thxs-normalized fluxes are biased by particle sorting effects during sediment redistribution. In order to study the sorting effect of sediment transport on 230Thxs, we analyzed the specific activity of 230Thxs in different particle size classes of carbonate-rich sediments from the South East Atlantic, and of opal-rich sediments from the Atlantic sector of the Southern Ocean. At both sites, we compare the 230Thxs distribution in neighboring high vs. low accumulation settings. Two grain-size fractionation methods are explored. We find that the 230Thxs distribution is strongly grain size dependent, and 50-90% of the total 230Thxs inventory is concentrated in fine material smaller than 10 µm, which is preferentially deposited at the high accumulation sites. This leads to an overestimation of the focusing factor Psi, and consequently to an underestimation of the vertical flux rate at such sites. The distribution of authigenic uranium indicates that fine organic-rich material has also been re-deposited from lateral sources. If the particle sorting effect is considered in the flux calculations, it reduces the estimated extent of sediment focusing. In order to assess the maximum effect of particle sorting on Psi, we present an extreme scenario, in which we assume a lateral sediment supply of only fine material (< 10 µm). In this case, the focusing factor of the opal-rich core would be reduced from Psi = 5.9 to Psi = 3.2. In a more likely scenario, allowing silt-sized material to be transported, Psi is reduced from 5.9 to 5.0 if particle sorting is taken into consideration. The bias introduced by particle sorting is most important for strongly focused sediments. Comparing 230Thxs-normalized mass fluxes biased by sorting effects with uncorrected mass fluxes, we suggest that 230Thxs-normalization is still a valid tool to correct for lateral sediment redistribution. However, differences in focusing factors between core locations have to be evaluated carefully, taking the grain size distributions into consideration.
Resumo:
We analysed the alkenone unsaturation ratio (UK'37) in 87 surface sediment samples from the western South Atlantic (5°N-50°S) in order to evaluate its applicability as a paleotemperature tool for this part of the ocean. The measured UK'37 ratios were converted into temperature using the global core-top calibration of Müller et al. (1998, doi:10.1016/S0016-7037(98)00097-0) and compared with annual mean atlas sea-surface temperatures (SSTs) of overlying surface waters. The results reveal a close correspondence (<1.5°C) between atlas and alkenone temperatures for the Western Tropical Atlantic and the Brazil Current region north of 32°S, but deviating low alkenone temperatures by -2° to -6°C are found in the regions of the Brazil-Malvinas Confluence (35-39°S) and the Malvinas Current (41-48°S). From the oceanographic evidence these low UK'37 values cannot be explained by preferential alkenone production below the mixed layer or during the cold season. Higher nutrient availability and algal growth rates are also unlikely causes. Instead, our results imply that lateral displacement of suspended particles and sediments, caused by strong surface and bottom currents, benthic storms, and downslope processes is responsible for the deviating UK'37 temperatures. In this way, particles and sediments carrying a cold water UK'37 signal of coastal or southern origin are transported northward and offshore into areas with warmer surface waters. In the northern Argentine Basin the depth between displaced and unaffected sediments appears to coincide with the boundary between the northward flowing Lower Circumpolar Deep Water (LCDW) and the southward flowing North Atlantic Deep Water (NADW) at about 4000 m.
Resumo:
The area west of the Antarctic Peninsula is a key region for studying and understanding the history of glaciation in the southern high latitudes during the Neogene with respect to variations of the western Antarctic continental ice sheet, variable sea-ice cover, induced eustatic sea level change, as well as consequences for the global climatic system (Barker, Camerlenghi, Acton, et al., 1999). Sites 1095, 1096, and 1101 were drilled on sediment drifts forming the continental rise to examine the nature and composition of sediments deposited under the influence of the Antarctic Peninsula ice sheet, which has repeatedly advanced to the shelf edge and subsequently released glacially eroded material on the continental shelf and slope (Barker et al., 1999). Mass gravity processes on the slope are responsible for downslope sediment transport by turbidity currents within a channel system between the drifts. Furthermore, bottom currents redistribute the sediments, which leads to final build up of drift bodies (Rebesco et al., 1998). The high-resolution sedimentary sequences on the continental rise can be used to document the variability of continental glaciation and, therefore, allow us to assess the main factors that control the sediment transport and the depositional processes during glaciation periods and their relationship to glacio-eustatic sea level changes. Site 1095 lies in 3840 m of water in a distal position on the northwestern lower flank of Drift 7, whereas Site 1096 lies in 3152 m of water in a more proximal position within Drift 7. Site 1101 is located at 3509 m water depth on the northwestern flank of Drift 4. All three sites have high sedimentation rates. The oldest sediments were recovered at Site 1095 (late Miocene; 9.7 Ma), whereas sediments of Pliocene age were recovered at Site 1096 (4.7 Ma) and at Site 1101 (3.5 Ma). The purpose of this work is to provide a data set of bulk sediment parameters such as CaCO3, total organic carbon (TOC), and coarse-fraction mass percentage (>63 µm) measured on the sediments collected from the continental rise of the western Antarctic Peninsula (Holes 1095A, 1095B, 1096A, 1096B, 1096C, and 1101A). This information can be used to understand the complex depositional processes and their implication for variations in the climatic system of the western Pacific Antarctic margin since 9.7 Ma (late Miocene). Coarse-fraction particles (125-500 µm) from the late Pliocene and Pleistocene (4.0 Ma to recent) sediments recovered from Hole 1095A were microscopically analyzed to gather more detailed information about their variability and composition through time. These data can yield information about changes in potential source regions of the glacially eroded material that has been transported during repeated periods of ice-sheet movements on the shelf.
Resumo:
Clay mineral and bulk chemical (Si, Al, K, Mg, Sr, La, Ce, Nd) analyses of terrigenous surface sediments on the Siberian-Arctic shelf indicate that there are five regions with distinct, or endmember, sedimentary compositions. The formation of these geochemical endmembers is controlled by sediment provenance and grain size sorting. (1) The shale endmember (Al, K and REE rich sediment) is eroded from fine-grained marine sedimentary rocks of the Verkhoyansk Mountains and Kolyma-Omolon superterrain, and discharged to the shelf by the Lena, Yana, Indigirka and Kolyma Rivers. (2) The basalt endmember (Mg rich) originates from NE Siberia's Okhotsk-Chukotsk volcanic belt and Bering Strait inflow, and is prevalent in Chukchi Sea Sediments. Concentrations of the volcanically derived clay mineral smectite are elevated in Chukchi fine-fraction sediments, corroborating the conclusion that Chukchi sediments are volcanic in origin. (3) The mature sandstone endmember (Si rich) is found proximal to Wrangel Island and sections of the Chukchi Sea's Siberian coast and is derived from the sedimentary Chukotka terrain that comprises these landmasses. (4) The immature sandstone endmember (Sr rich) is abundant in the New Siberian Island region and reflects inputs from sedimentary rocks that comprise the islands. (5) The immature sandstone endmember is also prevalent in the western Laptev Sea, where it is eroded from sedimentary deposits blanketing the Siberian platform that are compositionally similar to those on the New Siberian Islands. Western Laptev can be distinguished from New Siberian Island region sediments by their comparatively elevated smectite concentrations and the presence of the basalt endmember, which indicate Siberian platform flood basalts are also a source of western Laptev sediments. In certain locations grain size sorting noticeably affects shelf sediment chemistry. (1) Erosion of fines by currents and sediment ice rafting contributes to the formation of the coarse-grained sandstone endmembers. (2) Bathymetrically controlled grain size sorting, in which fines preferentially accumulate offshore in deeper, less energetic water, helps distribute the fine-grained shale and basalt endmembers. An important implication of these results is that the observed sedimentary geochemical endmembers provide new markers of sediment provenance, which can be used to track sediment transport, ice-rafted debris dispersal or the movement of particle-reactive contaminants.