98 resultados para proximity query, collision test, distance test, data compression, triangle test
Resumo:
Evolutionary prospection is the study of morphological evolution and speciation in calcareous plankton from selected time-slices and key sites in the world oceans. In this context, the Neogene menardiform globorotalids serve as study objects for morphological speciation in planktic foraminifera. A downcore investigation of test morphology of the lineage of G. menardii-limbata-multicamerata during the past 8 million years was carried out in the western tropical Atlantic ODP Hole 925B. A total of 4669 specimens were measured and analyzed from 38 stratigraphic levels and compared to previous studies from DSDP Sites 502 and 503. Collection of digital images and morphometric measurements from digitized outlines were achieved using a microfossil orientation and imaging robot called AMOR and software, which was especially developed for this purpose. Most attention was given to the evolution of spiral height versus axial length of tests in keel view, but other parameters were investigated as well. The variability of morphological parameters in G. menardii, G. limbata, and G. multicamerata through time are visualized by volume density diagrams. At Hole 925B results show gradual test size increase in G. menardii until about 3.2 Ma. The combination of taxonomic determination in the light microscope with morphometric investigations shows strong morphological overlap and evolutionary continuity from ancestral to extant G. menardii (4-6 chambers in the final whorl) to the descendent but extinct G. limbata (seven chambers in the final whorl) and to G. multicamerata (>=8 chambers in the final whorl). In the morphospace defined by spiral height (dX) and axial length (dY) Globorotalia limbata and G. multicamerata strongly overlap with G. menardii. Distinction of G. limbata from G. menardii is only possible by slight differences in the number of chambers of the final whorl, nuances in spiral convexity, upper keel angles, radii of osculating circles, or by differences in reflectance of their tests. Globorotalia multicamerata can be distinguished from the other two forms by more than eight chambers in the final whorl. It appeared as two stratigraphically separate clusters during the Pliocene. Between 2.88 and 2.3 Ma G. menardii was severely restricted in size and abundance. Thereafter, it showed a rapid and prominent expansion of the upper test size extremes between 2.3 and 1.95 Ma persisting until present. The size-frequency distributions at Hole 925B are surprisingly similar to trends of menardiform globorotalids from Caribbean DSDP Site 502. There, the observations were explained as an adaptation to changes in the upper water column due to the emergence of the Isthmus of Panama. In light of more recent paleontological and geological investigations about the completion of the permanent land connection between North and South America since about 3 Ma the present study gives reason to suspect the sudden test size increase of G. menardii to reflect immigration of extra-large G. menardii from the Indian Ocean or the Pacific. It is hypothesized that during the Late Pliocene dispersal of large G. menardii into the southern to tropical Atlantic occurred during an intermittent episode of intense Agulhas Current leakage around the Cape of Good Hope and from there via warm eddy transport to the tropical Atlantic (Agulhas dispersal hypothesis).
Resumo:
Development plays an important part in shaping adult morphology and morphological disparity, yet its influence on evolutionary processes is seldom explored because of a lack of preservation of ontogenetic stages in the fossil record. By preserving their entire ontogenetic history within their test, and with the advent of high-resolution imaging techniques, planktic foraminifera allow us to investigate the influence of developmental constraints on disparity. Using Synchrotron radiation X-ray tomographic microscopy (SRXTM), we reconstruct the ontogenetic progression of seven species across several of the major morphotypic groups of planktic foraminifera, including morphotypes of a species exhibiting high phenotypic plasticity and closely related pseudo-cryptic sister-taxa. We show differences in growth patterns between the globigerinid species, which appear more tightly regulated within the framework of isometry from the neanic stage, and the globorotaliid species, whose adult stages present allometric trends. Morphological change through ontogeny results in a change in surface area to volume ratios. Different metabolic processes therefore dominate at different stages of ontogeny, changing the vulnerability of the organism to environmental influences over growth, from factors affecting diffusion rates in the juvenile to those affecting energy supply in the adult. These findings identify some of the parameters within which evolutionary mechanisms have to act.
Resumo:
This study is based on rock mechanical tests of samples from platform carbonate strata to document their petrophysical properties and determine their potential for porosity loss by mechanical compaction. Sixteen core-plug samples, including eleven limestones and five dolostones, from Miocene carbonate platforms on the Marion Plateau, offshore northeast Australia, were tested at vertical effective stress, sigma1', of 0-70 MPa, as lateral strain was kept equal to zero. The samples were deposited as bioclastic facies in platform-top settings having paleo-water depths of <10-90 m. They were variably cemented with low-Mg calcite and five of the samples were dolomitized before burial to present depths of 39-635 m below sea floor with porosities of 8-46%. Ten samples tested under dry conditions had up to 0.22% strain at sigma1' = 50 MPa, whereas six samples tested saturated with brine, under drained conditions, had up to 0.33% strain. The yield strength was reached in five of the plugs. The measured strains show an overall positive correlation with porosity. Vp ranges from 3640 to 5660 m/s and Vs from 1840 to 3530 m/s. Poisson coefficient is 0.20-0.33 and Young's modulus at 30 MPa ranged between 5 and 40 GPa. Water saturated samples had lower shear moduli and slightly higher P- to S-wave velocity ratios. Creep at constant stress was observed only in samples affected by pore collapse, indicating propagation of microcracks. Although deposited as loose carbonate sand and mud, the studied carbonates acquired reef-like petrophysical properties by early calcite and dolomite cementation. The small strains observed experimentally at 50 MPa indicate that little mechanical compaction would occur at deeper burial. However, as these rocks are unlikely to preserve their present high porosities to 4-5 km depth, further porosity loss would proceed mainly by chemical compaction and cementation.
Resumo:
Der Müller und die fünf Räuber, Überfall²³