109 resultados para plumifer species group


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the potential of community-based bird surveys in the tropics, we compared the species richness and abundances of bird functional groups that would be detected by a basic untrained observer (untrained observer survey, UOS) to a comprehensive bird species list compiled by a professional bird guide, in a coffee agroforestry landscape in the Peruvian East Andean foothills and compared functional signatures to global functional signatures of tropical bird assemblages. The submitted data comprises the transect counts of the UOS, the comprehensive bird list, ecological data of the recorded birds and information regarding the conservation status of the recorded birds from the IUCN Red List.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In total, ca. 7000 zooplanktonic species have been described for the World Ocean. This figure represents less than 4% of the total number of known marine organisms. Of the 7000 zooplanktonic species world-wide, some 60% are present in the South Atlantic; about one third of the latter have been recorded in its Subantarctic waters, and ca. 20% south of the Polar Front. When compared with those of benthic animals, these figures indicate that proportions of the overall inventories that are present in the cold waters are almost two times higher among the zooplankton. In agreement with this pattern, the proportions of Antarctic endemics in the benthos are very significantly higher than those in the plankton. For the water-column dwelling animals, the Polar Front boundary is more important than the Tropical-Subtropical limit, but almost equivalent to the Subtropical-Transitional limit, and weaker in biogeographic terms than the Transitional-Subantarctic boundary. Some of the implications of these dissimilarities, both for ecological theory and for resource allocation strategies, are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the calcareous nannofossil genus Discoaster have been used extensively to subdivide Tertiary deep-sea sediments into biostratigraphic zones or subzones (e.g., Martini, 1971; Bukry, 1973). Haq and Lohmann (1976) mapped biogeographic migrations of this group through time and over latitude. They suggested that expansions and contractions of Discoaster-dominated assemblages across latitudes reflect sea-surface temperature changes. Subsequently, late Pliocene Discoaster species were counted at closely spaced sample intervals from various Atlantic sites (Backman et al., 1986; Backman and Pestiaux, 1987; Chepstow-Lusty et al., 1989, 1991), and Indian Ocean as well as Pacific Ocean sites (Chepstow-Lusty, 1990). In addition to the biostratigraphic information revealing positions and the precision by which the different late Pliocene Discoaster species can be determined, these studies also demonstrated that discoasters strongly fluctuate in abundance as a function of time. These abundance variations occur in equatorial as well as temperate temperature regimes, and show periodicities that reflect orbital frequencies. Chepstow-Lusty et al. (1989, 1991) also suggested that the oscillating abundances partly represent productivity pressure, because discoasters tend to show low abundances under high productivity conditions and vice versa. In the Pacific Ocean, counts showing late Pliocene Discoaster abundances exist from three sites, namely Ocean Drilling Program (ODP) Site 677 in the eastern equatorial upwelling region, Core V28-179 from the central equatorial region, and Core V32-127 from the mid-latitude Hess Rise. The two Vema cores are condensed and show sedimentation rates below 0.5 cm/1000 yr, thus offering a poorly resolved stratigraphy. Hole 806C from the Ontong Java Plateau provided an opportunity to establish a highly resolved Discoaster record from the western extreme of the equatorial Pacific under an environmental setting that differed from ODP Site 677 by being less influenced by intense upwelling. The Discoaster counting technique is described by Backman and Shackleton (1983).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and distribution of the macrobenthic communities were studied in the southwestern Kara Sea. The material was collected in Baidaratskaya Bay in July 2007 and in a section running westward of the Yamal Peninsula in September 2007. The depths of the sampling stations ranged from 5 to 25 m in the Baidaratskaya Bay area and between 16 and 46 m in the Yamal section. A total of 212 benthic invertebrate species were recorded. In both areas, Bivalvia was the group with the highest biomass (54.88 g/m**2 in the Yamal section and 59.71 g/m**2 in the Baidaratskaya Bay area), while polychaetes were the group with the highest number of species (45 in the Yamal section and 64 the Baidaratskaya Bay area). Three major macrozoobenthic communities were recognized: the Astarte borealis community (20-46 m, the deepest sampling stations in both areas); the 'medium-depth' community (10-20 m, extremely mosaic, usually dominated by Serripes groenlandicus); and the Nephtys longosetosa community (depth smaller than 10 m, characterized by low biomass and the absence of large bivalves and echinoderms). The western Yamal shallow-water communities were shown to be generally similar to those of Baidaratskaya Bay. The comparison of these results with those of the benthos censuses performed in 1927-1945, 1975, and 1993 showed that the benthic communities in the southwestern Kara Sea remained relatively stable during the second half of the 20th century and the early 21st century.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usnea species of the Neuropogon group are amongst the most widespread and abundant macrolichens in Antarctic regions. Four principal species, U. antarctica, U. aurantiaco-atra, U. sphacelata and U. subantarctica, have been described on morphological grounds. However, identification to species level is often difficult and atypical morphologies frequently arise. Over 400 specimens were collected on the Antarctic Peninsula and Falkland Islands. Both morphological and molecular characters (ITS and RPB1) were used to compare samples to clarify taxonomic relationships. Morphological characteristics used included presence of apothecia, apothecial rays, soredia, papillae, fibrils, pigmentation and the diameter of the central axis as a proportion of branch diameter. Results revealed a very close relationship between U. antarctica and U. aurantiaco-atra, suggesting that they might constitute a species pair or be conspecific. Usnea sphacelata was comprised of at least two genetically distinct groups with no clear differences in morphology. One group included the first reported fertile specimen of this species. Usnea subantarctica was phylogenetically distinct from the other main Antarctic Usnea species, but clustered with U. trachycarpa. Genetic variation was evident within all species although there was no clear correlation between geographic origin and genetic relatedness. Phylogenetic analyses indicated that species circumscription in the Neuropogon group needs revision, with the principal species being non-monophyletic. None of the morphological characters, or groups of characters, used in this study proved to be completely unambiguous markers for a single species. However, axis thickness was supported as being informative for the identification of monophyletic lineages within the group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccolithophores are a key phytoplankton group that exhibit remarkable diversity in their biology, ecology, and calcitic exoskeletons (coccospheres). An understanding of the physiological processes that underpin coccosphere architecture is essential for maximizing the information that can be retrieved from their extensive fossil record. Using culturing experiments on four modern species from three long-lived families, we investigate how coccosphere architecture responds to population shifts from rapid (exponential) to slowed (stationary) growth phases as nutrients become depleted. These experiments reveal statistical differences in cell size and the number of coccoliths per cell between these two growth phases, specifically that cells in exponential-phase growth are typically smaller with fewer coccoliths, whereas cells experiencing growth-limiting nutrient depletion have larger coccosphere sizes and greater numbers of coccoliths per cell. Although the exact numbers are species-specific, these growth-phase shifts in coccosphere geometry are common to four different coccolithophore families (Calcidiscaceae, Coccolithaceae, Isochrysidaceae, Helicosphaeraceae), demonstrating that this is a core physiological response to nutrient depletion across a representative diversity of this phytoplankton group. Polarised light microscopy was used for all coccosphere geometry measurements.