94 resultados para plain carbon steels


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live (Rose Bengal stained) and dead benthic foraminifera of surface and subsurface sediments from 25 stations in the eastern South Atlantic Ocean and the Atlantic sector of the Southern Ocean were analyzed to decipher a potential influence of seasonally and spatially varying high primary productivity on the stable carbon isotopic composition of foraminiferal tests. Therefore, stations were chosen so that productivity strongly varied, whereas conservative water mass properties changed only little. To define the stable carbon isotopic composition of dissolved inorganic carbon (d13CDIC) in ambient water masses, we compiled new and previously published d13CDIC data in a section running from Antarctica through Agulhas, Cape and Angola Basins, via the Guinea Abyssal Plain to the Equator. We found that intraspecific d13C variability of all species at a single site is constantly low throughout their distribution within the sediments, i.e. species specific and site dependent mean values calculated from all subbottom depths on average only varied by +/-0.09 per mil. This is important because it makes the stable carbon isotopic signal of species independent of the particular microhabitat of each single specimen measured and thus more constant and reliable than has been previously assumed. So-called vital and/or microhabitat effects were further quantified: (1) d13C values of endobenthic Globobulimina affinis, Fursenkoina mexicana, and Bulimina mexicana consistently are by between -1.5 and -1.0 per mil VPDB more depleted than d13C values of preferentially epibenthic Fontbotia wuellerstorfi, Cibicidoides pachyderma, and Lobatula lobatula. (2) In contrast to the Antarctic Polar Front region, at all stations except one on the African continental slope Fontbotia wuellerstorfi records bottom water d13CDIC values without significant offset, whereas L. lobatula and C. pachyderma values deviate from bottom water values by about -0.4 per mil and -0.6 per mil, respectively. This adds to the growing amount of data on contrasting cibicid d13C values which on the one hand support the original 1:1-calibration of F. wuellerstorfi and bottom water d13CDIC, and on the other hand document severe depletions of taxonomically close relatives such as L. lobatula and C. pachyderma. At one station close to Bouvet Island at the western rim of Agulhas Basin, we interpret the offset of -1.5 per mil between bottom water d13CDIC and d13C values of infaunal living Bulimina aculeata in contrast to about -0.6 +/- 0.1 per mil measured at eight stations close-by, as a direct reflection of locally increased organic matter fluxes and sedimentation rates. Alternatively, we speculate that methane locally released from gas vents and related to hydrothermal venting at the mid-ocean ridge might have caused this strong depletion of 13C in the benthic foraminiferal carbon isotopic composition. Along the African continental margin, offsets between deep infaunal Globobulimina affinis and epibenthic Fontbotia wuellerstorfi as well as between shallow infaunal Uvigerina peregrina and F. wuellerstorfi, d13C values tend to increase with generally increasing organic matter decomposition rates. Although clearly more data are needed, these offsets between species might be used for quantification of biogeochemical paleogradients within the sediment and thus paleocarbon flux estimates. Furthermore, our data suggest that in high-productivity areas where sedimentary carbonate contents are lower than 15 weight %, epibenthic and endobenthic foraminiferal d13C values are strongly influenced by 13C enrichment probably due to carbonate-ion undersaturation, whereas above this sedimentary carbonate threshold endobenthic d13C values reflect depleted pore water d13CDIC values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic carbon fluxes through the sediment/water interface in the high-latitude North Atlantic were calculated from oxygen microprofiles. A wire-operated in situ oxygen bottom profiler was deployed, and oxygen profiles were also measured onboard (ex situ). Diffusive oxygen fluxes, obtained by fitting exponential functions to the oxygen profiles, were translated into organic carbon fluxes and organic carbon degradation rates. The mean Corg input to the abyssal plain sediments of the Norwegian and Greenland Seas was found to be 1.9 mg C/m**2/d. Typical values at the seasonally ice-covered East Greenland continental margin are between 1.3 and 10.9 mg C/m**2/d (mean 3.7 mg C/m**2/d), whereas fluxes on the East Greenland shelf are considerably higher, 9.1-22.5 mg C/m**2/d. On the Norwegian continental slope Corg fluxes of 3.3-13.9 mg C/m**2/d (mean 6.5 mg C/m**2/d) were found. Fluxes are considerably higher here compared to stations on the East Greenland slope at similar water depths. By repeated occupation of three sites off southern Norway in 1997 the temporal variability of diffusive O2 fluxes was found to be quite low. The seasonal signal of primary and export production from the upper water column appears to be strongly damped at the seafloor. Degradation rates of 0.004-1.1 mg C/cm**3/a at the sediment surface were calculated from the oxygen profiles. First-order degradation constants, obtained from Corg degradation rates and sediment organic carbon content, are in the range 0.03-0.6/a. Thus, the corresponding mean lifetime of organic carbon lies between 1.7 and 33.2 years, which also suggests that seasonal variations in Corg flux are small. The data presented here characterize the Norwegian and Greenland Seas as oligotrophic and relatively low organic carbon deep-sea environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free and "bound" long-chain alkenones (C37?2 and C37?3) in oxidized and unoxidized sections of four organic matter-rich Pliocene and Miocene Madeira Abyssal Plain turbidites (one from Ocean Drilling Program site 951B and three from site 952A) were analyzed to determine the effect of severe post depositional oxidation on the value of Uk'37. The profiles of both alkenones across the redox boundary show a preferential degradation of the C37?3 compared to the C37?2 compound. Because of the high initial Uk'37 values and the way of calculating the Uk'37 this degradation hardly influences the Uk'37 profiles. However, for lower Uk'37 values, measured selective degradation would increase Uk'37 up to 0.17 units, equivalent to 5°C. For most of the Uk'37 band-width, much smaller degradation already increases Uk'37 beyond the analytical error (0.017 units). Consequently, for interpreting the Uk'37 record in terms of past sea surface temperatures, selective degradation needs serious consideration.