818 resultados para nutrient accumulation rates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount and the accumulation rate of quartz were measured in 33 samples from Hole 576A. The amount and source of mineral aerosol being deposited in the northwest Pacific during the Cenozoic are evaluated using these data. When Hole 576A is compared to a Cenozoic record in the central North Pacific, a strong uniformity in the composition of the mineral aerosol across the North Pacific is seen. The data suggest that Hole 576A entered the influence of the westerlies about 15 m.y. ago and that since that time the rates of sediment deposition have increased. Only the dramatic change in quartz accumulation 2.5 m.y. ago can be clearly related to a climatic event, but a gradual increase in quartz accumulation through the Miocene and early Pliocene is probably a result of increasing Northern Hemisphere aridity and intensified atmospheric activity associated with global cooling during the interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six soft sediment cores, up to and over 9 m in length, and additional surface samples were selected for study of their planktonic foraminifera to provide information on the Holocene and Pleistocene stratigraphy of the West African continental margin south of the present boundary of the Sahara. The material was collected by the German research vessel "Meteor" during Cruise 25 in 1971. The residues larger than 160 microns determined, counted and statistically evaluated. Stratigraphical correlations with trans- Antlantic regions are given by occurrence of Truncorotalidoides hexagonus and Globorotalia tumidula flexuosa which mark the last interglacial stage. According to the climatic record the two deep-sea cores extend down to the V-zone, considered here as equivalent to the Mindel-Riss-interglacial time, as there are three distinctly warm and two cold periods indicated in the cores by planktonic foraminiferal faunas. Z-zone = Holocene is present in all cores, Y-zone = Wuermian glacial can be divided into five section, three cold and two warm stages; the X-zone can be divided into three warm stages, separated into two cool periods. The earliest warm stage is indicated to be the warmest one. There are excellent correlations to the Camp century ice core from Greenland, to the Mediterranean, to the Carribean and to the tropical Atlantic as well as to the Barnados stage. The W-zone was correlated to the Riss-glacial. V-zone is a warm period, the upper limit of which being not sufficiently defined, which contains also some cool sections. Increasing sedimentation rates from the deep-sea to the upper slope reveal climatic and regional details in Holocene and Late Pleistocene history of the continental margin. These were based mainly on different parameters of planktonic foraminiferal thanatocoenoses which are the main components of the size fraction >160 microns of the pelagic core. They become incerasingly diluted by other faunal and terrigenous components with decreasing slope depths. Estimates of absolute abundances, ranging from 25000 specimens/gm of sediment in the deep sea to less than 100, indicate various sedimentary processes at the continental margin. An ecological correlation by dominant species is possible. Readily computed temperature indices of different scales are presented which indicate, for instance, three distinctly cold sections within the last glacial and seven warm sections within the last interglacial lime. These are used for estimates of sedimentation rates. During cold periods sedimentation rates are higher than during warmer periods. Stratigraphic correlation and faunal record, combined with absolute abundances and sedimentation rates, indicated that in the deep sea turbidity currents not only cause high sedimentation rates for short periods of time, but also that material is occasionally eroded. Effects of upwelling may be detected in the surfacc sediment samples as well as in late Pleistocene and early Holocene samples of the slope by planktonic foraminiferal data which are not influenced by sedimentary processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mass-accumulation rate (MAR) of the non-authigenic, inorganic, crystalline component of deep-sea sediments from the Pacific aseismic rises apparently reflects influx of eolian sediment. The eolian sediment usually is dominated by volcanic material, except during glacial times. Sediments from Hess Rise provide a discontinuous record of eolian MARs. During Albian to Cenomanian time, the influx of volcanic material was fairly high (0.35-0.6 g/cm**2/10**3 yr), recording the latest stages of the Albian volcanism that formed Hess Rise. From the Campanian through the Paleocene, influx of eolian sediment was low, averaging 0.03 g/cm**2/10**3 yr. None of the four Hess Rise drill sites show evidence of the Late Cretaceous volcanic episode recorded at many sites now in the equatorial to subtropical Pacific. Pliocene to Pleistocene samples record a peak in volcanic influx about 4 to 5 m.y. ago, which has been well documented elsewhere. The several-fold increase in eolian accumulation rates elsewhere which are correlated with the onset of severe northernhemisphere glaciation 2.5 m.y. ago is not obvious in the Hess Rise data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from 13 firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963-2007/08 being up to 25% different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20% over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation rates of Mg, Al, Si, Mn, Fe, Ni, Cu, Zn, opal, and calcium carbonate have been calculated from their concentrations in samples from equatorial Deep Sea Drilling Project sites. Maps of element accumulation rates and of Q-mode factors derived from raw data indicate that the flux of trace metals to equatorial Pacific sediments has varied markedly through time and space in response to changes in the relative and absolute influence of several depositional influences: biogenic, detrital, authigenic, and hydrothermal sedimentation. Biologically derived material dominates the sediment of the equatorial Pacific. The distributions of Cu and Zn are most influenced by surface-water biological activity, but Ni, Al, Fe, and Mn are also incorporated into biological material. All of these elements have equatorial accumulation maxima similar to those of opal and calcium carbonate at times during the past 50 m.y. Detritus distributed by trade winds and equatorial surface circulation contributes Al, non-biogenic Si, Fe, and Mg to the region. Detrital sediment is most important in areas with a small supply of biogenic debris and low bulk-accumulation rates. Al accumulation generally increases toward the north and east, indicating its continental source and distribution by the northeast trade winds. Maxima in biological productivity during middle Eocene and latest Miocene to early Pliocene time and concomitant well-developed surface circulation contributed toward temporal maxima in the accumulation rates of Cu, Zn, Ni, and Al in sediments of those ages. Authigenic material is also important only where bulk-sediment accumulation rates are low. Ni, Cu, Zn, and sometimes Mn are associated with this sediment. Fe is almost entirely of hydrothermal origin. Mn is primarily hydrothermal, but some is probably scavenged from sea water by amorphous iron hydroxide floes along with other elements concentrated in hydrothermal sediments, Ni, Cu, and Zn. During the past 50 m.y. all of these elements accumulated over the East Pacific Rise at rates nearly an order of magnitude higher than those at non-rise-crest sites. In addition, factor analysis indicates that some of this material is carried substantial distances to the west of the rise crest. Accumulation rates of Fe in basal metalliferous sediments indicate that the hydrothermal activity that supplied amorphous Fe oxides to the East Pacific Rise areas was most intense during middle Eocene and late Miocene to early Pliocene time.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid warming of arctic regions during recent decades has been recorded by instrumental monitoring, but the natural climate variability in the past is still sparsely reconstructed across many areas. We have reconstructed past climate changes in subarctic west-central Canada. Stable carbon and oxygen isotope ratios (d13C, d18O) were derived from a single Sphagnum fuscum plant component; alpha-cellulose isolated from stems. Periods of warmer and cooler conditions identified in this region, described in terms of a "Mediaeval Climatic Anomaly" and "Little Ice Age" were registered in the temperature reconstruction based on the d13C record. Some conclusions could be drawn about wet/dry shifts during the same time interval from the d18O record, humification indices and the macrofossil analysis. The results were compared with other proxy data from the vicinity of the study area. The amplitude of the temperature change was similar to that in chironomid based reconstructions, showing c. 6.5 ±2.3 °C variability in July temperatures during the past 6.2 ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern depositional environment of the deep Norwegian-Greenland Sea is highly asymmetric in an E-W direction because of the hydrography of the surface water masses and because of the more or less permanent pack ice cover of the East Greenland Current regime along the Greenland continental margin. By means of sedimentation rates we have tried to investigate whether this hydrographic asymmetry influenced the sediment input to the Norwegian-Greenland Sea over the past 60 m.y. Sediment input can be quantified if thicknesses of sediment sections accumulated over known time intervals can be measured and if some of their physical properties have been determined. Sedimentation rates have been estimated for Tertiary and Quaternary times, and their temporal as well as their spatial changes are discussed. Basin structure and morphology exerted an important influence on sediment distribution. During the Early Tertiary major sediment source regions in the southern Barents Sea and to the north and west of Iceland could be identified; these source regions supplied the bulk of the sediment fill of the Norwegian-Greenland Sea. Since inception of a "glacial" type sedimentation major elements of the sea surface circulation seem to have controlled the sediment input into this polar and subpolar deep-sea basin.