359 resultados para nitrogen content


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here, we present bulk organic geochemical data from a spatial grid of surface samples from the western Barents Sea region. The results show that the distribution of organic carbon in surface sediments is predominantly controlled by input from land-derived terrigenous and in-situ produced marine organic matter. Inferred from various nitrogenous fractions and stable isotopes of bulk organic carbon we show that the spatial distribution of terrigenous organic carbon is independent of water depth, organic carbon mineralization and variable sedimentation rates. Instead, the pattern is predominantly controlled by sea ice-induced lateral transport and subsequent release in the Marginal Ice Zone (MIZ) as well as the distance to shore. Consistent with the observation of high vertical flux of particulate organic material in the MIZ, are amounts of marine organic carbon significantly enhanced in sediments below the winter ice margin. This is in accordance with modern observations suggesting that Arctic shelves with seasonal ice zones can be hot spots of vertical carbon export and thus a potential CO2 sink.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Termites are the most important soil ecosystem engineers of semi-arid and arid habitats. They enhance decomposition processes as well as the subsequent mineralisation of nutrients by bacteria and fungi. Through their construction of galleries, nests and mounds, they promote soil turnover and influence the distribution of nutrients and also alter texture and hydrological properties of soils, thereby affecting the heterogeneity of their ecosystem. The main aim of the present thesis was to define the impact of termites on ecosys-tem functioning in a semi-arid ecosystem. In a baseline study, I assessed the diversity of termite taxa in relation to the amount of precipitation, the vegetation patterns and the land use systems at several sites in Namibia. Subsequently, I focussed on a species that is highly abundant in many African savannas, the fungus growing and mound building species Macro-termes michaelseni (Sjöstedt, 1914). I asked how this species influences the spatial hetero-geneity of soil and vegetation patterns. From repeated samplings at 13 sites in Namibia, I obtained 17 termite taxa of 15 genera. While the type of land use seems to have a minor effect on the termite fauna, the mean annual precipitation explained 96% and the Simpson index of vascular plant diversity 81% of the variation in taxa diversity. The number of termite taxa increased with both of these explanation variables. In contrast to former studies on Macrotermes mounds in several regions of Africa that I reviewed, soil analyses from M. michaelseni mounds in the central Namibian savanna revealed that they contain much higher nitrogen contents when compared to their parent material. Further analyses revealed that nitrate forms a major component of the nitrogen content in termite mounds. As nitrate solves easily in water, evaporation processes are most probably responsible for the transport of solved nitrates to the mound surface and their accumulation there. The analysed mounds in central Namibia contained higher sand propor-tions compared to the mounds of the former studies. Through the higher percentage of coarse and middle sized pores, water moves more easily in sandy soils compared to more clayey soils. In consequence, evaporation-driven nitrate accumulation can occur in the studied mounds at high rates. ff...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To determine the influence of fire and thermokarst in a boreal landscape, we investigated peat cores within and adjacent to a permafrost collapse feature on the Tanana River Floodplain of Interior Alaska. Radioisotope dating, diatom assemblages, plant macrofossils, charcoal fragments, and carbon and nitrogen content of the peat profile indicate ~600 years of vegetation succession with a transition from a terrestrial forest to a sedge-dominated wetland over 100 years ago, and to a Sphagnum-dominated peatland in approximately 1970. The shift from sedge to Sphagnum, and a decrease in the detrended tree-ring width index of black spruce trees adjacent to the collapse coincided with an increase in the growing season temperature record from Fairbanks. This concurrent wetland succession and reduced growth of black spruce trees indicates a step-wise ecosystem-level response to a change in regional climate. In 2001, fire was observed coincident with permafrost collapse and resulted in lateral expansion of the peatland. These observations and the peat profile suggest that future warming and/or increased fire disturbance could promote permafrost degradation, peatland expansion, and increase carbon storage across this landscape; however, the development of drought conditions could reduce the success of both black spruce and Sphagnum, and potentially decrease the long-term ecosystem carbon storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The critical role played by copepods in ocean ecology and biogeochemistry warrants an understanding of how these animals may respond to ocean acidification (OA). Whilst an appreciation of the potential direct effects of OA, due to elevated pCO2, on copepods is improving, little is known about the indirect impacts acting via bottom-up(food quality) effects. We assessed, for the first time, the chronic effects of direct and/or indirect exposures to elevated pCO2 on the behaviour, vital rates, chemical and biochemical stoichiometry of the calanoid copepod Acartia tonsa. Bottom-up effects of elevated pCO2 caused species-specific biochemical changes to the phytoplanktonic feed, which adversely affected copepod population structure and decreased recruitment by 30 %. The direct impact of elevated pCO2 caused gender-specific respiratory responses in A.tonsa adults, stimulating an enhanced respiration rate in males (> 2-fold), and a suppressed respiratory response in females when coupled with indirect elevated pCO2 exposures. Under the combined indirect+direct exposure, carbon trophic transfer efficiency from phytoplankton-to-zooplankton declined to < 50 % of control populations, with a commensurate decrease in recruitment. For the first time an explicit role was demonstrated for biochemical stoichiometry in shaping copepod trophic dynamics. The altered biochemical composition of the CO2-exposed prey affected the biochemical stoichiometry of the copepods, which could have ramifications for production of higher tropic levels, notably fisheries. Our work indicates that the control of phytoplankton and the support of higher trophic levels involving copepods have clear potential to be adversely affected under future OA scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During summer 2014 (mid-July - mid-September 2014), early life-stage Fucus vesiculosus were exposed to combined ocean acidification and warming (OAW) in the presence and absence of enhanced nutrient levels (OAW x N experiment). Subsequently, F. vesiculosus germlings were exposed to a final upwelling disturbance during 3 days (mid-September 2014). Experiments were performed in the near-natural scenario "Kiel Outdoor Benthocosms" including natural fluctuations in the southwestern Baltic Sea, Kiel Fjord, Germany (54°27 'N, 10°11 'W). Genetically different sibling groups and different levels of genetic diversity were employed to test to which extent genetic variation would result in response variation. The data presented here show the phenotypical response (growth and survival) of the different experimental populations of F. vesiculosus under OAW, nutrient enrichment and the upwelling event. Log effect ratios demonstrate the responses to enhanced OAW and nutrient concentrations relative to the ambient conditons. Carbon, nitrogen content (% DW) and C:N ratios were measured after the exposure of ambient and high nutrient levels. Abiotic conditions the OAW x nutrient experiment and the upwelling event, are shown.