118 resultados para model determination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sulu Sea is located in the 'warm pool' of the western Pacific Ocean, where mean annual temperatures are the highest of anywhere on Earth. Because this large heat source supplies the atmosphere with a significant portion of its water vapour and latent heat, understanding the climate history of the region is important for reconstructing global palaeoclimate and for predicting future climate change. Changes in the oxygen isotope composition of planktonic foraminifera from Sulu Sea sediments have previously been shown to reflect changes in the planetary ice volume at glacial-interglacial and millenial timeseales, and such records have been obtained for the late Pleistocene epoch and the last deglaciation (Linsley and Thunell, 1990, doi:10.1029/PA005i006p01025; Lindley and Dunbar, 1994, doi:10.1029/93PA03216; Kudrass et al., 1991, doi:10.1038/349406a0). Here I present results that extend the millenial time resolution record back to 150,000 years before present. On timescales of around 10,000 years, the Sulu Sea oxygen-isotope record matches changes in sea level deduced from coral terraces on the Huon peninsula (Chappell and Shackleton, doi:10.1038/324137a0). This is particularly the case during isotope stage 3 (an interglacial period 23,000 to 58,000 years ago) where the Sulu Sea oxygen-isotope record deviates from the SPECMAP deep-ocean oxygen-isotope record (Imbrie et al., 1984). Thus these results support the idea (Chappell and Shackleton, doi:10.1038/324137a0; Shackleton, 1987, doi:10.1016/0277-3791(87)90003-5) that there were higher sea levels and less continental ice during stage 3 than the SPECMAP record implies and that sea level during this interglacial was just 40-50 metres below present levels. The subsequent rate of increase in continental ice volume during the return to full glacial conditions was correspondingly faster than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the continental margin of the southeastern Weddell Sea, Antarctica, several channel-ridge systems can be traced on the eastern side of the Crary Fan. Swath mapping of the bathymetry reveals three southwest-northeast trending ridges up to 300 m high with channels on their southeastern side. The structures occur on a terrace of the continental slope in water depths of 2000 - 3300 m. We carried out sedimentological studies on cores from three sites. Two of the studied cores are from ridges, one is from the northwestern part of the terrace. The stratigraphy of the recovered sediments is based on accelerator mass spectrometer 14C determinations, stable oxygen and carbon isotopes analyses and paleomagnetic measurements. The sediments represent a period from the last glacial maximum (LGM) to recent time. They are composed predominantly of terrigenous components. We distinguish four different sedimentary facies and assign them to processes controlling sedimentation. Microlaminated muds and cross-stratified coarse-silty sediments originated from contour currents. Bioturbated sediments reflect the increasing influence of hemipelagic sedimentation. Structureless sediments with high contents of ice-rafted debris characterize slumps. The inferred contour currents shaping the continental slope during the LGM were canalized within the channels and supplied microlaminated mud to the western sedimentary ridges due to deflection to the left induced by the Coriolis force. The lamination of the sediments is attributed to seasonal variations of current velocities. The thermohaline bottom currents were directed to the northeast and hence opposite to the Weddell Gyre. Cross-stratified coarse-silty contourites on the ridges are intercalated with the muds and indicate spillover of faster thermohaline flows. Average sedimentation rates on the terrace of the continental slope were unusually high (250 cm/ka) during the LGM, indicating active growth phases of the Crary Fan during glacial intervals. A substantial environmental change at 19.5 - 20 ka is documented in the sediments by a gradual change from lamination to bioturbation. During the recent interglacial, bioturbated sediments were deposited in all parts of the terrace. Because of a reduction of the contour current velocities (4-7 cm/s), the water masses of the Weddell Gyre, supplying fine-grained sediments from northeast, gain a greater influence on sedimentation on the continental slope. Higher percentages of microfossils indicate enhanced biogenic productivity. Increased iceberg activity is documented by greater amounts of ice-rafted debris. The interglacial sedimentation rates decrease to a few cm/ka and indicate that the Crary Fan became relatively sediment-starved during interglacial intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic and planktonic 14C ages are presented for the last glacial termination from marine sediment core VM21-30 from 617 m in the eastern equatorial Pacific. The benthic-planktonic 14C age differences in the core increased to more than 6000 years between Heinrich 1 time and the end of the Younger Dryas period. Several replicated 14C ages on different benthic and planktonic species from the same samples within the deglacial section of the core indicate a minimal amount of bioturbation. Scanning electron microscopy reveals no evidence of calcite alteration or contamination. The oxygen isotope stratigraphy of planktonic and benthic foraminifera does not indicate anomalously old (glacial age) values, and there is no evidence of a large negative stable carbon isotope excursion in benthic foraminifera that would indicate input of old carbon from dissociated methane. It appears, therefore, that the benthic 14C excursion in this core is not an artifact of diagenesis, bioturbation, or a pulse of methane. A benthic D14C stratigraphy reconstructed from the 14C ages from the deglacial section of VM21-30 appears to match that of Baja margin core MV99-MC19/GC31/PC08 (705 m), but the magnitude of the low-14C excursion is much larger in the VM21-30 record. This would seem to imply that the VM21-30 core was closer to the source of 14C-depleted waters during the deglaciation, but the source of this CO2 remains elusive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A decadal resolution time series of sea surface temperature (SST) spanning the last two millennia is reconstructed by combining a proxy record from a new sediment sequence with previously published data from core MD99-2275, north of Iceland. The alkenone based SST reconstruction is validated with historic observational data and compared to a new similar temporal resolution reconstruction obtained from sediment core RAPiD21-3K, in the subpolar North Atlantic. The two SST paleorecords show consistent multidecadal scale coolings throughout the interval and similar expressions during the contrasted climatic periods 'colloquially known' as the Medieval Climatic Anomaly (MCA) and Little Ice Age (LIA). In order to further understand the temporal and spatial SST variations and investigate the influence of natural forcings on the observed SST changes during the last millennium, we compare our time series to simulations using the Institut Pierre-Simon Laplace IPSLCM4-v2 climate model. This comparison highlights the potential importance of volcanism as a natural forcing driving coherent abrupt cooling events captured in the subpolar North Atlantic records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMS radiocarbon ages have been determined on terrestrial macrofossils selected from the annually laminated sediments of lake Holzmaar (Germany). The radiocarbon chronology of this lake covers the last 12.6 ka. Comparison of the radiocarbon dated varve chronology with tree ring data shows that an additional 878 years have to be added to the varve chronology. The corrected 14C varve chronology of Holzmaar reaches back to ca. 13.8 ka cal. BP and compares favourably with the results from Soppensee (Switzerland) (Hajdas et al., 1993, doi:10.1007/BF00209748). The corrected ages for the onset and the end of the Younger Dryas biozone are 11,940 cal. BP and 11,490 cal. BP, respectively. The ash layer of the Laacher See volcanic eruption is dated at 12,201 ± 224 cal. BP and the Ulmener Tephra layer is dated at 10,904 cal. BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed deglacial and Holocene records of planktonic d18O and Mg/Ca-based sea surface temperature (SST) from the Okinawa Trough suggest that at ~18 to 17 thousand years before present (kyr B.P.), late spring/early summer SSTs were approximately 3°C cooler than today, while surface waters were up to 1 practical salinity unit saltier. These conditions are consistent with a weaker influence of the summer East Asian Monsoon (EAM) than today. The timing of suborbital SST oscillations suggests a close link with abrupt changes in the EAM and North Atlantic climate. A tropical influence, however, may have resulted in subtle decoupling between the North Atlantic and the Okinawa Trough/EAM during the deglaciation. Okinawa Trough surface water trends in the Holocene are consistent with model simulations of an inland shift of intense EAM precipitation during the middle Holocene. Millennial-scale alternations between relatively warm, salty conditions and relatively cold, fresh conditions suggest varying influence of the Kuroshio during the Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present a high-resolution marine sediment record from the El Niño region off the coast of Peru spanning the last 20,000 years. Sea surface temperature, photosynthetic pigments, and a lithic proxy for El Niño flood events on the continent are used as paleo-El Niño-Southern Oscillation proxy data. The onset of stronger El Niño activity in Peru started around 17,000 calibrated years before the present, which is later than modeling experiments show but contemporaneous with the Heinrich event 1. Maximum El Niño activity occurred during the early and late Holocene, especially during the second and third millennium B.P. The recurrence period of very strong El Niño events is 60-80 years. El Niño events were weak before and during the beginning of the Younger Dryas, during the middle of the Holocene, and during medieval times. The strength of El Niño flood events during the last millennium has positive and negative relationships to global and Northern Hemisphere temperature reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotope data from planktonic and benthic foraminifera, on a high-resolution age model (44 14C dates spanning 17,400 years), document deglacial environmental change on the southeast Alaska margin (59°33.32'N, 144°9.21'W, 682 m water depth). Surface freshening (i.e., d18O reduction of 0.8 per mil) began at 16,650 ± 170 cal years B.P. during an interval of ice proximal sedimentation, likely due to freshwater input from melting glaciers. A sharp transition to laminated hemipelagic sediments constrains retreat of regional outlet glaciers onto land circa 14,790 ± 380 cal years B.P. Abrupt warming and/or freshening of the surface ocean (i.e., additional d18O reduction of 0.9 per mil) coincides with the Bølling Interstade of northern Europe and Greenland. Cooling and/or higher salinities returned during the Allerød interval, coincident with the Antarctic Cold Reversal, and continue until 11,740 ± 200 cal years B.P., when onset of warming coincides with the end of the Younger Dryas. An abrupt 1 per mil reduction in benthic d18O at 14,250 ± 290 cal years B.P. likely reflects a decrease in bottom water salinity driven by deep mixing of glacial meltwater, a regional megaflood event, or brine formation associated with sea ice. Two laminated opal-rich intervals record discrete episodes of high productivity during the last deglaciation. These events, precisely dated here at 14,790 ± 380 to 12,990 ± 190 cal years B.P. and 11,160 ± 130 to 10,750 ± 220 cal years B.P., likely correlate to similar features observed elsewhere on the margins of the North Pacific and are coeval with episodes of rapid sea level rise. Remobilization of iron from newly inundated continental shelves may have helped to fuel these episodes of elevated primary productivity and sedimentary anoxia.