477 resultados para core-level
Resumo:
Organic petrologic and geochemical analyses were performed on modern and Quaternary organic carbon-poor deep sea sediments from the Equatorial Atlantic. The study area covers depositional settings from the West African margin (ODP Site 959) through the Equatorial Divergence (ODP Site 663) to the pelagic Equatorial Atlantic. Response of organic matter (OM) deposition to Quaternary climatic cycles is discussed for ODP Sites 959 and 663. The results are finally compared to a concept established for fossil deep sea environments [Littke and Sachsenhofer, 1994 doi:10.1021/ef00048a041]. Organic geochemical results obtained from Equatorial Atlantic deep sea deposits provide new aspects on the distribution of sedimentary OM in response to continental distance, atmospheric and oceanographic circulation, and depositional processes controlling sedimentation under modern and past glacial-interglacial conditions. The inventory of macerals in deep sea deposits is limited due to mechanical breakdown of particles, degree of oxidation, and selective remineralization of labile (mostly marine) OM. Nevertheless, organic petrology has a great potential for paleoenvironmental studies, especially as a proxy to assess quantitative information on the relative abundance of marine vs. terrigenous OM. Discrepancies between quantitative data obtained from microscopic and isotopic (delta13Corg) analyses were observed depending on the stratigraphic level and depositional setting. Strongest offset between both records was found close to the continent and during glacial periods, suggesting a coupling with wind-born terrigenous OM from central Africa. Since African dust source areas are covered by C4 grass plants, supply of isotopically heavy OM is assumed to have caused the difference between microscopic and isotopic records.
Resumo:
Between 1999 and 2001, a 724 m long ice core was drilled on Akademii Nauk, the largest glacier on Severnaya Zemlya, Russian Arctic. The drilling site is located near the summit. The core is characterized by high melt-layer content. The melt layers are caused by melting and even by rain during the summer. We present high-resolution data of density, electrical conductivity (dielectrical profiling), stable water isotopes and melt-layer content for the upper 136 m (120 m w.e.) of the ice core. The dating by isotopic cycles and electrical conductivity peak identification suggests that this core section covers approximately the past 275 years. Singularities of volcanogenic and anthropogenic origin provide well-defined additional time markers. Long-term temperatures inferred from 12 year running mean averages of d18O reach their lowest level in the entire record around 1790. Thereafter the d18O values indicate a continuously increasing mean temperature on the Akademii Nauk ice cap until 1935, interrupted only by minor cooling episodes. The 20th century is found to be the warmest period in this record.
Resumo:
We report on the EPICA Dronning Maud Land (East Antarctica) deep drilling operation. Starting with the scientific questions that led to the outline of the EPICA project, we introduce the setting of sister drillings at NorthGRIP and EPICA Dome C within the European ice-coring community. The progress of the drilling operation is described within the context of three parallel, deep-drilling operations, the problems that occurred and the solutions we developed. Modified procedures are described, such as the monitoring of penetration rate via cable weight rather than motor torque, and modifications to the system (e.g. closing the openings at the lower end of the outer barrel to reduce the risk of immersing the drill in highly concentrated chip suspension). Parameters of the drilling (e.g. core-break force, cutter pitch, chips balance, liquid level, core production rate and piece number) are discussed. We also review the operational mode, particularly in the context of achieved core length and piece length, which have to be optimized for drilling efficiency and core quality respectively. We conclude with recommendations addressing the design of the chip-collection openings and strictly limiting the cable-load drop with respect to the load at the start of the run.
Resumo:
Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since ~16 cal ka BP. Herb-dominated tundra persisted until ~14.7 cal ka BP with mean July air temperatures less than or equal to 5 °C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bølling/Allerød interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of ~1.5 °C (~2.5 to 3.0 °C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Betula shrub tundra from ~5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea.