314 resultados para Weathering.
Resumo:
Epiclastic volcanogenic rocks recovered from the Kerguelen Plateau during Ocean Drilling Program Legs 119 and 120 comprise (pre-)Cenomanian(?) claystones (52 m thick, Site 750); a Turonian(?) basaltic pebble conglomerate (1.2 m thick, Site 748; Danian mass flows (45 m thick, Site 747); and volcanogenic debris flows of Quaternary age at Site 736 (clastic apron of Kerguelen Island). Pyroclastic rocks comprise numerous Oligocene to Quaternary marine ash layers. The epiclastic sediments with transitional mid-ocean-ridge basalt (T-MORB) origin indicate weathering (Site 750) and erosion (Site 747) of Early Cretaceous T-MORB from a then-emergent Kerguelen Plateau, connected to Late Cretaceous tectonic events. The basal pebble conglomerate of Site 748 has an oceanic-island basalt (OIB) composition and denotes erosion and reworking of seamount to oceanic-island-type volcanic sources. The vitric- to crystal-rich marine ash layers are a few centimeters thick, have rather uniform grain sizes around 60 ± 40 µm, and are a result of Plinian eruptions. Crystal-poor silicic vitric ashes may also represent co-ignimbrite ashes. The ash layers have bimodal, basaltic, and silicic compositions with a few intermediate shards. The basaltic ashes are evolved high-titanium T-MORB; a few grains in a silicic pumice lapilli layer have a low-titanium basaltic composition. The silicic ashes comprise trachytic and rhyolitic glass shards belonging to a high-K series, except for a few low-K glasses admixed to a basaltic ash layer. Feldspar and clinopyroxene compositions fit the glass chemistry: high-Ti tholeiite-basaltic glasses have Plagioclase of An40-80 and pigeonite to augite clinopyroxene compositions. Silicic ashes have K-rich anorthoclase and minor Plagioclase around An20 and ferriaugitic to hedenbergitic clinopyroxene compositions. The line of magmatic evolution for the glass shards is not compatible with simple two-end member (high-Ti T-MORB and high-K rhyolite) mixing, but favors successive Ca-Mg-Fe pyroxene, Ti magnetite, and apatite fractionation, and K-rich alkali feldspar fractionation in trachytic magmas to yield rhyolitic compositions. Plagioclase fractionation occurs throughout. This qualitative model is in basic accordance with the observed mineral assemblage. However, as the time span for explosive volcanism spans >30 m.y., this basic model cannot comply with fractional crystallization in a single magma reservoir. The ash layers resulted from highly explosive eruptions on Kerguelen and, with less probability, Heard islands since the Oligocene. The explosive history starts with widespread Oligocene basaltic ash layers that indicate sea-level or subaerial volcanism on the Northern Kerguelen Plateau. After a hiatus of 24 m.y.(?), explosive magmatic activity was vigorously renewed in the late Miocene with more silicic eruptions. A peak in explosive activity is inferred for the Pliocene-Pleistocene. The composition and evolution of Kerguelen Plateau ash layers resemble those from other hotspot-induced, oceanic-island realms such as Iceland and Jan Mayen in the North Atlantic, and the Canary Islands archipelago in the Central Atlantic.
Resumo:
An evaluation has been made of the method of establishing the REE contents and patterns and Nd isotopic compositions of sea water over Cenozoic time from their record in the FeMn-oxide coatings of foraminiferal calcite. Using 0-60 Ma samples from the Rio Grande Rise (DSDP Site 357) it has been established that the REE contents of the coatings are generally similar to those of Recent samples. However, in the Cenozoic samples the surface coatings have been diagenetically modified under suboxic conditions resulting in a distinctly different REE pattern although the original 143Nd/144Nd ratios appear to have been preserved. The Nd isotopic curve for Cenozoic sea water in the S. Atlantic shows clear temporal trends, although these are not so extreme as to show 143Nd/144Nd ratios outside the range observed in modem sea water. With the principal exception of the oldest samples there is an approximate inverse relationship between the Nd and Sr isotopic compositions of the foraminifera. It is suggested that the changes reflect both global changes in the relative proportions of Nd and Sr derived from continental input and from the weathering of volcanic debris together with short term and local variations to which the Sr curve is insensitive, reflecting the different response times of the two elements to changes in oceanic input functions. The Nd isotope curve appears to be a potentially useful tracer of ocean palaeochemistry.
Resumo:
Seawater 87Sr/86Sr values increase abruptly by 28 * 10**-6 across the Cretaceous/Tertiary boundary (KTB). This small, but rapid shift is superimposed on the larger scale structure of the seawater Sr isotope curve. The time scale of radiogenic Sr addition appears to be too rapid to reconcile with sources associated with volcanism, and we show that the amount of Sr required to produce even this small increase is too large to be derived from: (1) a KT bolide of the size constrained by the Ir anomaly, (2) continental crust ejecta from the impact of such a bolide, (3) soot from global wildfires initiated by an impact, or (4) any combination of these sources. The probable source of the radiogenic Sr is enhanced continental weathering, but the high rate of increase appears to rule out processes such as sea level regression, glaciation or tectonism. A plausible mechanism for rapid addition of radiogenic Sr to the oceans is enhanced weathering associated with globally distributed acid rain (pH c. 1) which is a proposed by-product of a bolide impact (Prinn and Fegley, 1987, doi:10.1016/0012-821X(87)90046-X).
Resumo:
Through the Deep Sea Drilling Project samples of interstitial solutions of deeply buried marine sediments throughout the World Ocean have been obtained and analyzed. The studies have shown that in all but the most slowly deposited sediments pore fluids exhibit changes in composition upon burial. These changes can be grouped into a few consistent patterns that facilitate identification of the diagenetic reactions occurring in the sediments. Pelagic clays and slowly deposited (<1 cm/1000 yr) biogenic sediments are the only types that exhibit little evidence of reaction in the pore waters. In most biogenic sediments sea water undergoes considerable alteration. In sediments deposited at rates up to a few cm/1000 yr the changes chiefly involve gains of Ca(2+) and Sr(2+) and losses of Mg(2+) which balance the Ca(2+) enrichment. The Ca-Mg substitution may often reach 30 mM/kg while Sr(2+) may be enriched 15-fold over sea water. These changes reflect recrystallization of biogenic calcite and the substitution of Mg(2+) for Ca(2+) during this reaction. The Ca-Mg-carbonate formed is most likely a dolomitic phase. A related but more complex pattern is found in carbonate sediments deposited at somewhat greater rates. Ca(2+) and Sr(2+) enrichment is again characteristic, but Mg(2+) losses exceed Ca(2+) gains with the excess being balanced by SO4(post staggered 2-) losses. The data indicate that the reactions are similar to those noted above, except that the Ca(2+) released is not kept in solution but is precipitated by the HCO3(post staggered -) produced in SO4(post staggered 2-) reduction. In both these types of pore waters Na(+) is usually conservative, but K(+) depletions are frequent. In several partly consolidated sediment sections approaching igneous basement contact, very marked interstitial calcium enrichment has been found (to 5.5 g/kg). These phenomena are marked by pronounced depletion in Na(+), Si and CO2, and slight enhancement in Cl(-). The changes are attributed to exchange of Na(+) for Ca(2+) in silicate minerals forming from submarine weathering of igneous rocks such as basalts. Water is also consumed in these reactions, accounting for minor increases in total interstitial salinity. Terrigenous, organic-rich sediments deposited rapidly along continental margins also exhibit significant evidences of alteration. Microbial reactions involving organic matter lead to complete removal of SO4(post staggered 2-), strong HCO3(post staggered -) enrichment, formation of NH4(post staggered +), and methane synthesis from H2 and CO2 once SO4(post staggered 2-) is eliminated. K+ and often Na+ (slightly) are depleted in the interstitial waters. Ca(2+) depletion may occur owing to precipitation of CaCO3. In most cases interstitial Cl- remains relatively constant, but increases are noted over evaporitic strata, and decreases in interstitial Cl- are observed in some sediments adjacent to continents.
Resumo:
Oxygen isotopes in marine sulfate (d18O SO4) measured in marine barite show variability over the past 10 million years, including a 5per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.
Resumo:
Recent works (Evelpidou et al., 2012) suggest that the modern tidal notch is disappearing worldwide due sea level rise over the last century. In order to assess this hypothesis, we measured modern tidal notches in several of sites along the Mediterranean coasts. We report observations on tidal notches cut along carbonate coasts from 73 sites from Italy, France, Croatia, Montenegro, Greece, Malta and Spain, plus additional observations carried outside the Mediterranean. At each site, we measured notch width and depth, and we described the characteristics of the biological rim at the base of the notch. We correlated these parameters with wave energy, tide gauge datasets and rock lithology. Our results suggest that, considering 'the development of tidal notches the consequence of midlittoral bioerosion' (as done in Evelpidou et al., 2012) is a simplification that can lead to misleading results, such as stating that notches are disappearing. Important roles in notch formation can be also played by wave action, rate of karst dissolution, salt weathering and wetting and drying cycles. Of course notch formation can be augmented and favoured also by bioerosion which can, in particular cases, be the main process of notch formation and development. Our dataset shows that notches are carved by an ensemble rather than by a single process, both today and in the past, and that it is difficult, if not impossible, to disentangle them and establish which one is prevailing. We therefore show that tidal notches are still forming, challenging the hypothesis that sea level rise has drowned them.
Resumo:
We detail the petrography and mineralogy of 145 basaltic rocks from the top, middle, and base of flow units identified on shipboard along with associated pyroclastic samples. Our account includes representative electron microprobe analyses of primary and secondary minerals; 28 whole-rock major-oxide analyses; 135 whole-rock analyses each for 21 trace elements; 7 whole-rock rare-earth analyses; and 77 whole-rock X-ray-diffraction analyses. These data show generally similar petrography, mineralogy, and chemistry for the basalts from all four sites; they are typically subalkaline and consanguineous with limited evolution along the tholeiite trend. Limited fractionation is indicated by immobile trace elements; some xenocrystic incorporation from more basic material also occurred. Secondary alteration products indicate early subaerial weathering followed by prolonged interaction with seawater, most likely below 150°C at Holes 552, 553A, and 554A. At Hole 555, greenschist alteration affected the deepest rocks (olivine-dolerite) penetrated, at 250-300°C.
Resumo:
The 87Sr/86Sr ratios and Sr concentrations in sediment and pore fluids are used to evaluate the rates of calcite recrystallization at ODP Site 807A on the Ontong Java Plateau, an 800-meter thick section of carbonate ooze and chalk. A numerical model is used to evaluate the pore fluid chemistry and Sr isotopes in an accumulating section. The deduced calcite recrystallization rate is 2% per million years (%/Myr) near the top of the section and decreases systematically in older parts of the section such that the rate is close to 0.1/age (in years). The deduced recrystallization rates have important implications for the interpretation of Ca and Mg concentration profiles in the pore fluids. The effect of calcite recrystallization on pore fluid chemistry is described by the reaction length, L, which varies by element, and depends on the concentration in pore fluid and solid. When L is small compared to the thickness of the sedimentary section, the pore fluid concentration is controlled by equilibrium or steady-state exchange with the solid phase, except within a distance L of the sediment-water interface. When L is large relative to the thickness of sediment, the pore fluid concentration is mostly controlled by the boundary conditions and diffusion. The values of L for Ca, Sr, and Mg are of order 15, 150, and 1500 meters, respectively. L_Sr is derived from isotopic data and modeling, and allows us to infer the values of L_Ca and L_Mg. The small value for L_Ca indicates that pore fluid Ca concentrations, which gradually increase down section, must be equilibrium values that are maintained by solution-precipitation exchange with calcite and do not reflect Ca sources within or below the sediment column. The pore fluid Ca measurements and measured alkalinity allow us to calculate the in situ pH in the pore fluids, which decreases from 7.6 near the sediment-water interface to 7.1+/-0.1 at 400-800 mbsf. While the calculated pH values are in agreement with some of the values measured during ODP Leg 130, most of the measurements are artifacts. The large value for L_Mg indicates that the pore fluid Mg concentrations at 807A are not controlled by calcite-fluid equilibrium but instead are determined by the changing Mg concentration of seawater during deposition, modified by aqueous diffusion in the pore fluids. We use the pore fluid Mg concentration profile at Site 807A to retrieve a global record for seawater Mg over the past 35 Myr, which shows that seawater Mg has increased rapidly over the past 10 Myr, rather than gradually over the past 60 Myr. This observation suggests that the Cenozoic rise in seawater Mg is controlled by continental weathering inputs rather than by exchange with oceanic crust. The relationship determined between reaction rate and age in silicates and carbonates is strikingly similar, which suggests that reaction affinity is not the primary determinant of silicate dissolution rates in nature.
Resumo:
In the lower part of DSDP core 53.0, partly recrystallized carbonate sediments and well recrystallized limestone breccias of Oligo-Miocene age are associated with altered volcanic flows, lithified tuffs, and tuff breccias, suggesting that carbonate alteration was the result of thermal metamorphism. However, the oxygen isotope compositions of these carbonates (-3.4 to +0.6 per mil rel. PDB) are not compatible with recrystallization and isotope exchange with sea water at high temperatures. Evaluating the effects of the composition of the water which exchanged with the carbonates and of carbonate-water isotope exchange in closed systems yields the following approximate maximum temperature of recrystallization: limestone breccias, 100°C; calcite veins rimming breccia clasts, 30°C; and unconsolidated sediments overlying the breccias, 20°C. Therefore, the volcanics at site 53.0 must have been emplaced into the primary carbonate sediments at relatively low temperatures. Subsequent carbonate alteration was probably a consequence of chemical changes in ambient pore waters resulting from the submarine weathering of volcanic material.
Resumo:
We report new 187Os/186Os data and Re and Os concentrations in metalliferous sediments from the Pacific to construct a composite Os isotope seawater evolution curve over the past 80 m.y. Analyses of four samples of upper Cretaceous age yield 187Os/186Os values of between 3 and 6.5 and 187Re/186Os values below 55. Mass balance calculations indicate that the pronounced minimum of about 2 in the Os isotope ratio of seawater at the K-T boundary probably reflects the enormous input of cosmogenic material into the oceans by the K-T impactor(s). Following a rapid recovery to 187Os/186Os of 3.5 at 63 Ma, data for the early and middle part of the Cenozoic show an increase in 187Os/186Os to about 6 at 15 Ma. Variations in the isotopic composition of leachable Os from slowly accumulating metalliferous sediments show large fluctuations over short time spans. In contrast, analyses of rapidly accumulating metalliferous carbonates do not exhibit the large oscillations observed in the pelagic clay leach data. These results together with sediment leaching experiments indicate that dissolution of non-hydrogenous Os can occur during the hydrogen peroxide leach and demonstrate that Os data from pelagic clay leachates do not always reflect the Os isotopic composition of seawater. New data for the late Cenozoic further substantiate the rapid increase in the 187Os/186Os of seawater during the past 15 Ma. We interpret the correlation between the marine Sr and Os isotope records during this time period as evidence that weathering within the drainage basin of the Ganges-Brahmaputra river system is responsible for driving seawater Sr and Os toward more radiogenic isotopic compositions. The positive correlation between 87Sr/86Sr and U concentration, the covariation of U and Re concentrations, and the high dissolved Re, U and Sr concentrations found in the Ganges-Brahmaputra river waters supports this interpretation. Accelerating uplift of many orogens worldwide over the past 15 Ma, especially during the last 5 Ma, could have contributed to the rapid increase in 187Os/186Os from 6 to 8.5 over the past 15 Ma. Prior to 15 Ma the marine Sr and Os record are not tightly coupled. The heterogeneous distribution of different lithologies within eroding terrains may play an important role in decoupling the supplies of radiogenic Os and Sr to the oceans and account for the periods of decoupling of the marine Sr and Os isotope records.
Resumo:
An 18 million year record of the Ca isotopic composition (d44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. ?44/42Ca in this record averages +0.37+/-0.05 (1 sigma SD) and ranges from +0.21? to +0.52?. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25? lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their d44/42Ca (i.e., by 0.06+/-0.06? (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in d44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (d44/42Ca_w) and for isotope fractionation associated with the production of carbonate sediments (D_sed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of +/-0.05? in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in d44/42Ca_w of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in D_sed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in d44/42Ca_w and D_sed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.
Resumo:
A Cenozoic multi-species record of benthic foraminiferal calcite Sr/Ca has been produced and is corrected for interspecific offsets (typically less than 0.3 mmol/mol) and for the linear relationship between decreasing benthic foraminiferal Sr/Ca and increasing water depth. The water depth correction, determined from Holocene, Late Glacial Maximum and Eocene paleowater-depth transects, is ~0.1 mmol/mol/km. The corrected Cenozoic benthic foraminiferal Sr/Ca record ranges from 1.2 to 2.0 mmol/mol, and has been interpreted in terms of long-term changes in seawater Sr/Ca, enabling issues related to higher-resolution variability in Sr/Ca to be ignored. We estimate that seawater Sr/Ca was ~1.5 times modern values in the late Cretaceous, but declined rapidly into the Paleogene. Following a minimum in the Eocene, seawater Sr/Ca increased gradually through to the present day with a minimum superimposed on this trend centered in the late Miocene. By assuming scenarios for changing seawater calcium concentration, and using published carbonate accumulation rate data combined with suitable values for Sr partition coefficients into carbonates, the seawater Sr/Ca record is used to estimate global average river Sr fluxes. These fluxes are used in conjunction with the seawater strontium isotope curve and estimates of hydrothermal activity/tectonic outgassing to calculate changes in global average river 87Sr/86Sr through the Cenozoic. The absolute magnitude of Sr fluxes and isotopic compositions calculated in this way are subject to relatively large uncertainties. Nevertheless, our results suggest that river Sr flux increased from 35 Ma to the present day (roughly two-fold) accompanied by an overall increase in 87Sr/86Sr (by ~0 to 0.001). Between 75 and 35 Ma, river 87Sr/86Sr also increased (by ~0.001 to 0.002) but was accompanied by a decrease (two- to three-fold) in river Sr flux.
Resumo:
Osmium (Os) isotope analyses of bulk sediments from the South Atlantic, Equatorial Pacific, and the Italian Apennines yield a well-dated and coherent pattern of 187Os/188Os variation from the late Eocene to the early Oligocene. The resulting composite record demonstrates the global character of two prominent features of the low-resolution LL44-GPC3 Os isotope record (Pegram and Turekian, 1999, doi:10.1016/S0016-7037(99)00308-7). These are: (1) a pronounced minimum in 187Os/188Os (0.22-0.27) in the late Eocene, between 34 and 34.5 Ma, and (2) a subsequent rapid increase in 187Os/188Os, to approximately 0.6 by 32 Ma. An ultramafic weathering event and an increased influx of extraterrestrial particles to the Earth are discussed as alternative explanations for the late Eocene 187Os/188Os minimum. Comparison of the 187Os/188Os to benthic foraminiferal oxygen isotope records demonstrates that the nearly three-fold increase in 187Os/188Os from the late Eocene minimum coincides with the growth and decay of the first large ice sheet of the Oligocene (Oi1 (Miller et al., 1991, doi:10.1029/90JB02015)). The fine structure of the Os isotope record indicates that enhanced release of radiogenic Os, unrelated to the recovery from late Eocene minimum, lagged the initiation of the Oi1 event by roughly 0.5 Myr. This record, in conjunction with weathering studies in modern glacial soils (Blum, in: W.F. Ruddiman (Ed.), Tectonic Uplift and Climate Change, Plenum Press, New York, 1997, pp. 259-288; Peucker-Ehrenbrink and Blum, 1998, doi:10.1016/S0016-7037(98)00227-0), suggests that exposure of freshly eroded material during deglaciation following Oi1 enhanced chemical weathering rates, and may have contributed to ice sheet stabilization by drawing down atmospheric carbon dioxide. The improved temporal resolution and age control of the refined Eocene-Oligocene Os isotope record also makes it possible to illustrate the late Eocene Os isotope excursion as a tool for global correlation of marine sediments.
Resumo:
87Sr/86Sr data of belemnites are presented from a Middle Jurassic-Early Cretaceous succession from the Falkland Plateau (Deep Sea Drilling Project Sites 511 and 330) that was deposited in a periodically anoxic, semi-enclosed shallow water basin. Diagenetically screened strontium-isotope values of 0.706789 rise to 0.707044 before increasing sharply to 0.707428 in the uppermost part of the sampled succession. Comparison with published strontium calibration curves suggests that the oldest samples were Callovian to Oxfordian in age, whilst the remainder of the Jurassic part of the succession consisted of Kimmeridgian and Early Tithonian age sediments. The nannofossil, dinoflagellate and molluscan assemblages provide comparable age determinations. The strontium-isotope analysis of the youngest belemnites points to a Hauterivian-Barremian age, whilst age interpretations based upon the fauna provide a wide age range from the Barremian to early Albian. Strontium-isotope stratigraphy of this succession hence offers increased age resolution providing data regarding the timing of episodes of bottom water anoxia which have been recorded throughout the South Atlantic Basin. Well-preserved belemnite specimens display an oxygen-isotope range between +0.08 and -2.22? (PDB, Peedee belemnite international standard) and a carbon-isotope range from +2.35 to -1.33? (PDB). Delta13C values become increasingly negative through the Late Jurassic-Early Cretaceous and in concert with the 87Sr/86Sr data reveal a trend that could be accounted for by increasing levels of weathering and erosion. The oxygen-isotope data if interpreted in terms of palaeotemperature are consistent with warm palaeotemperatures in the Kimmeridgian and slightly cooler temperatures for the Tithonian and Early Cretaceous parts of the succession. The proposed relative Kimmeridgian warmth (based upon strontium-isotope age assignments) is thus in good agreement with other published palaeotemperature records.