185 resultados para Water influence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccolithophores, a key phytoplankton group, are one of the most studied organisms regarding their physiological response to ocean acidification/carbonation. The biogenic production of calcareous coccoliths has made coccolithophores a promising group for paleoceanographic research aiming to reconstruct past environmental conditions. Recently, geochemical and morphological analyses of fossil coccoliths have gained increased interest in regard to changes in seawater carbonate chemistry. The cosmopolitan coccolithophore Emiliania huxleyi (Lohm.) Hay and Mohler was cultured over a range of pCO2 levels in controlled laboratory experiments under nutrient replete and nitrogen limited conditions. Measurements of photosynthesis and calcification revealed, as previously published, an increase in particulate organic carbon production and a moderate decrease in calcification from ambient to elevated pCO2. The enhancement in particulate organic carbon production was accompanied by an increase in cell diameter. Changes in coccolith volume were best correlated with the coccosphere/cell diameter and no significant correlation was found between the coccolith volume and the particulate inorganic carbon production. The conducted experiments revealed that the coccolith volume of E. huxleyi is variable with aquatic CO2 concentration but its sensitivity is rather small in comparison with its sensitivity to nitrogen limitation. Comparing coccolith morphological and geometrical parameters like volume, mass and size to physiological parameters under controlled laboratory conditions is an important step to understand variations in fossil coccolith geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon isotopes are a powerful tool to investigate the cycling of dissolved silicon (Si). In this study the distribution of the Si isotope composition of dissolved silicic acid (d30Si(OH)4) was analyzed in the water column of the Eastern Equatorial Pacific (EEP) where one of the globally largest Oxygen Minimum Zones (OMZs) is located. Samples were collected at 7 stations along two meridional transects from the equator to 14°S at 85°50'W and 82°00'W off the Ecuadorian and Peruvian coast. Surface waters show a large range in isotope compositions d30Si(OH)4 (+2.2 per mil to +4.4 per mil) with the highest values found at the southernmost station at 14°S. This station also revealed the most depleted silicic acid concentrations (0.2 µmol/kg), which is a function of the high degree of Si utilization by diatoms and admixture with waters from highly productive areas. Samples within the upper water column and the OMZ at oxygen concentrations below 10 µmol/kg are characterized by a large range in d30Si(OH)4, which mainly reflects advection and mixing of different water masses, even though the highly dynamic hydrographic system of the upwelling area off Peru does not allow the identification of clear Si isotope signals for distinct water masses. Therefore we cannot rule out that also dissolution processes have an influence on the d30Si(OH)4 signature in the subsurface water column. Deep water masses (>2000 m) in the study area show a mean d30Si(OH)4 of +1.2±0.2 per mil, which is in agreement with previous studies from the eastern and central Pacific. Comparison of the new deep water data of this study and previously published data from the central Pacific and Southern Ocean reveal substantially higher d30Si(OH)4 values than deep water signatures from the North Pacific. As there is no clear correlation between d30Si(OH)4 and silicic acid concentrations in the entire data set the distribution of d30Si(OH)4 signatures in deep waters of the Pacific is considered to be mainly a consequence of the mixing of several end member water masses with distinct Si isotope signatures including Lower Circumpolar Deep Water (LCDW) and North Pacific Deep Water (NPDW).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of dissolved (0.2 µm filtered) aluminium (Al) have been determined for the first time in the Eurasian part of the Arctic Ocean over the entire water column during expedition ARK XXII/2 aboard R.V. Polarstern (2007). An unprecedented number of 666 samples was analysed for 44 stations along 5 ocean transects. Dissolved Al in surface layer water (SLW) was very low, close to 1 nM, with lowest SLW concentrations towards the Canadian part of the Arctic Ocean and higher values adjacent to and in the shelf seas. The low SLW concentrations indicate no or little influence from aeolian dust input. Dissolved Al showed a nutrient-type increase with depth up to 28 nM, but large differences existed between the different deep Arctic basins. The differences in concentrations of Al between water masses and basins could largely be related to the different origins of the water masses. In the SLW and intermediate water layers, Atlantic and Pacific inflows were of importance. Deep shelf convection appeared to influence the Al distribution in the deep Eurasian Basin. The Al distribution of the deep Makarov Basin provides evidence for Eurasian Basin water inflow into the deep Makarov Basin. A strong correlation between Al and Silicon (Si) was observed in all basins. This correlation and the nutrient-like profile indicate a strong biological influence on the cycling and distribution of Al. The biological influence can be direct by the incorporation of Al in biogenic silica, indirect by preferential scavenging of Al onto biogenic siliceous particles, or by a combination of both processes. From the slope of the overall Al-Si relationship in the intermediate water layer (AIDW; ~ 200-2000 m depth), an Al/Si ratio of 2.2 atoms Al per 1000 atoms Si was derived. This ratio is consistent with the range of previously reported Al/Si uptake ratio in biogenic opal frustules of diatoms. In the deepest waters (>2000 m depth) a steeper slope of the Al-Si relationship of 7.4 to 13 atoms Al per 1000 atoms Si likely results from entrainment of cold shelf water into the deep basins, carrying the signal of dissolution of terrigenous particles with a much higher Al:Si ratio of crustal abundance. Only a small enrichment with such crustal Al and Si component may readily account for the higher Al:Si slope in the deepest waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lipid composition of particulate matter in oceanic environments can provide informations on the nature and origin of the organic matter as well as on their transformation processes. Molecular characteristics for lipids in the Arctic environment have been used as indicators of the sources and transformation of organic particulate matter (Smith et al., 1997; Fahl and Stein, 1997, 1999). However, the features of the lipid composition of particulate matter in the Arctic with its high seasonality of ice Cover and primary productivity has been studied insufficiently. Lipids are one of the most important compounds of organic matter. On the one hand, the composition of lipids is a result of the variability of biological sources (phyto- and zooplankton, higher plants, bacteria etc.). On the other hand, the lipid composition of particulate matter is undergone significant alteration during vertical transport. The organic matter balance in the Arctic marginal seas, such as the Kara and Laptev seas, is characterized by the significant supply of dissolved and particulate material by the major Eurasian rivers - Ob, Yenisei and Lena (Cauwet and Sidorov, 1996; Gordeev et al., 1996, Martin et al., 1993). In relation to the world's ocean the primary productivity values are lower in the Arctic seas due to the ice-cover. However local increased values of primary productivity can be connected with the melting processes inducing increased phytoplankton growth near ice-edge (Nelson et al., 1989; Fahl and Stein, 1997) and enhanced river supply of nutrients, These features can influence the proportion of allochtonous and autochtonous components of the organic matter in the Arctic marginal seas (Fahl and Stein, 1997; Stein and Fahl, 1999). Furthermore, increased lipid contents in aquatic environments were found near density discontinuities (Parish et al., 1988). Although being less informative than lipid studies on the molecular level the character of lipid composition analysis on the group could also be used for studying of particulate organic matter and its transformation in sedimentation processes in the Arctic. In this paper the investigation of the characteristics of lipid composition performed by Alexandrova and Shevchenko (1997) in Arctic seas was continued.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow transverse bedforms (ripples and dunes) are ubiquitous in rivers and coastal seas. Local hydrodynamics and transport conditions depend on the size and geometry of these bedforms, as they constitute roughness elements at the bed. Bedform influence on flow energy must be considered for the understanding of flow dynamics, and in the development and application of numerical models. Common estimations or predictors of form roughness (friction factors) are based mostly on data of steep bedforms (with angle-of-repose lee slopes), and described by highly simplified bedform dimensions (heights and lengths). However, natural bedforms often are not steep, and differ in form and hydraulic effect relative to idealised bedforms. Based on systematic numerical model experiments, this study shows how the hydraulic effect of bedforms depends on the flow structure behind bedforms, which is determined by the bedform lee side angle, aspect ratio and relative height. Simulations reveal that flow separation behind bedform crests and, thus, a hydraulic effect is induced at lee side angles steeper than 11 to 18° depending on relative height, and that a fully developed flow separation zone exists only over bedforms with a lee side angle steeper than 24°. Furthermore, the hydraulic effect of bedforms with varying lee side angle is evaluated and a reduction function to common friction factors is proposed. A function is also developed for the Nikuradse roughness (k s), and a new equation is proposed which directly relates k s to bedform relative height, aspect ratio and lee side angle.