898 resultados para Titanium Oxide


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The PS2644 deep-sea core sequence, retrieved from the northwestern margin of Iceland and covering the last 86 ka, exhibits high sedimentation rates during the last glacial cycle that allow the clear distinction of Greenland stadial (GS)/ interstadial (GI) cycles in the various proxy records. Abundance records of rhyolitic, basaltic and tachylytic tephra grains reveal several maxima. Tephra grains of all types were geochemically analyzed in 44 levels. A total of 92 tephras with a distinctive character have been defined within the glacial sequence of gravity core PS2644-5, whereas the Holocene record is dominated by reworked Vedde Ash grains and not suitable for tephra stratigraphic work. Of the 92 tephras only 19 geochemical populations have been linked with confidence to previously defined tephras such as from the Vedde Ash, Faeroe Marine Ash Zones (FMAZ) II and III and North Atlantic Ash Zone (NAAZ) II. For the glacial period informal names were given to 78 new tephras, most of which are basaltic tephras. Several of these layers have a unique geochemical character and might become new chronostratigraphic markers in the North Atlantic region. Linking the tephra populations to the volcanic system producing them, respectively, revealed that Icelandic eruptions dominate with 83 tephra geochemical populations and Jan Mayen with 9. Around 48% of the informal tephra layers linked to the Icelandic volcanic province are produced from either the Grimsvötn or the Veidivötn-Bardarbunga volcanic systems. The intervals spanning from Greenland Stadial (GS) 3 to Greenland Interstadial (GI) 4 (24.5-29 ka BP), from GI 8 to GS 10 (36.9-40.5 ka BP) and from GI 14 to GI 15.2 (50-56 ka BP) are the periods with the highest number of eruptions, all of which are associated with known tephra zones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples from sediment cores collected during the Swedish Deep-Sea Expedition 1947-1948 have been analyzed in the Geochemical laboratory of the Geological Survey of Sweden. Most samples were placed at our disposal by Professor Hans Pettersson, leader of the expedition mentioned. For complementary studies, samples from the Atlantic and Indian oceans were included in our investigation and the samples placed at our disposal by Professor B. Kullenberg, Göteborg. From the Tyrrhenian Sea we got samples from Professor E. Norin, Uppsala.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents data on geographic and geologic conditions of modern sedimentation in the Lake Untersee, the largest lake in the East Antarctica. Geochemical and sedimentation data indicate that the leading mechanism supplying aluminosilicate sedimentary material to the surface layer of bottom sediments is seasonal melting of the Anuchin glacier and the mountain glacier on the southeastern part of the valley hosting the lake. Strongly reduced conditions in the lowermost 25 m of the water column in the smaller of two depressions of the lake bottom were favorable for enrichment of the bottom sediments in bacteriogenic organic matter, Mo, Au, and Pd. H2S-contaminated water results to significant enrichment of the sediments only in redox-sensitive elements that are able to migrate in anionic complexes and precipitate (co-precipitate) as sulfides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sarcya 1 dive explored a previously unknown 12 My old submerged volcano, labelled Cornacya. A well developed fracturation is characterised by the following directions: N 170 to N-S, N 20 to N 40, N 90 to N 120, N 50 to N 70, which corresponds to the fracturation pattern of the Sardinian margin. The sampled lavas exhibit features of shoshonitic suites of intermediate composition and include amphibole-and mica-bearing lamprophyric xenoliths which are geochemically similar to Ti-poor lamproites. Mica compositions reflect chemical exchanges between the lamprophyre and its shoshonitic host rock suggesting their simultaneous emplacement. Nd compositions of the Cornacya K-rich suite indicate that continental crust was largely involved in the genesis of these rocks. The spatial association of the lamprophyre with the shoshonitic rocks is geochemically similar to K-rich and TiO2-poor igneous suites, emplaced in post-collisional settings. Among shoshonitic rocks, sample SAR 1-01 has been dated at 12.6±0.3 My using the 40Ar/39Ar method with a laser microprobe on single grains. The age of the Cornacya shoshonitic suite is similar to that of the Sisco lamprophyre from Corsica, which similarly is located on the western margin of the Tyrrhenian Sea. Thus, the Cornacya shoshonitic rocks and their lamprophyric xenolith and the Sisco lamprophyre could represent post-collisional suites emplaced during the lithospheric extension of the Corsica-Sardinia block, just after its rotation and before the Tyrrhenian sea opening. Drilling on the Sardinia margin (ODP Leg 107) shows that the upper levels of the present day margin (Hole 654) suffered tectonic subsidence before the lower part (Hole 652). The structure of this lower part is interpreted as the result of an eastward migration of the extension during Late Miocene and Early Pliocene times. Data of Cornacya volcano are in good agreement with this model and provide good chronological constraints for the beginning of the phenomenon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This monograph forms the fourth part of the tenth volume of the scientific results of the voyage of the German exploring ship Valdivia in the Atlantic and Indian Oceans, made during the years 1898-1899. These volumes are published under the editorship of Prof. Chun, the zoologist of Leipzig, who was leader of the expedition ; and Prof. E. Philippi with the cooperation of Sir John Murray. The nature of the materials brought up at various points during the voyage is well illustrated by a series of plates, similar to those accompanying the Challenger volumes. Among the concretions from the Agulhas Bank were found phosphatic nodules containing 33 per cent, of calcium carbonate, 28 of calcium phosphate, 14.6 of calcium sulphate, and 4.8 of magnesium carbonate, with some ferric oxide, alumina, and silica. These nodules were dredged at a depth of 155 metres. Off the coast of Namibia, a large quantity of manganese nodules were also dredged. Their chemical analysis performed at the Mineralogical Institute of the University Jena show similar composition as the nodules recovered by the "Challenger" at station 253 in the Pacific Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concentrically ringed manganese nodules, similar in form to many found on modern ocean and sea floors, occur in a very fine grained argillaceous sandstone bed of the Permian Park City Formation near Dillon, Montana. They are enriched in many rare elements and contain us much as 2.5 percent zinc, l.3 percent nickel, and 0.22 percent cobalt. The manganese minerals are chalcophanite and todorokite. The nodules probably formed in a shallow marine oxidizing environment on the western side of the Permian sedimentary basin. The occurrence of an appreciable amount of fluorite in the bed suggests that the water was saline.