120 resultados para Tables(data)
Resumo:
The capillary-pressure characteristics of 22 samples of lithified post-Paleozoic Indian-Ocean carbonates were compared to published data from older carbonate rocks (lower Paleozoic Hunton Group of Texas and Oklahoma). The Indian-Ocean samples are considerably more porous than are the Paleozoic samples, yet all of the Indian-Ocean samples fit readily into a descriptive petrofacies scheme previously established for the Hunton Group. The Indian-Ocean samples may be assigned to four petrophysical facies (petrofacies) based on the shapes of their capillary-pressure curves, their pore-throat-size distributions, their estimated recovery efficiency values (for nonwetting fluids), and the visual characteristics of their pore systems, as observed with a scanning-electron microscope. Petrofacies assignments for the Indian-Ocean samples are as follows. Petrofacies I includes six samples collected from the coarse basal portions of event deposits (primarily turbidites). These samples have large throats, leptokurtic throat-size distributions, low- to moderate recovery efficiency values, concave cumulative-intrusion capillary-pressure curves, and high porosity values. Petrofacies II includes two sedimentologically dissimilar samples that have medium-size throats, platykurtic throat-size distributions, moderate- to-high recovery efficiency values, gently sloping cumulative-intrusion capillary-pressure curves, and high porosity values. Petrofacies III includes two polymictic sandstones and a skeletal packstone that have small throats, polymodal throat-size distributions, moderate recovery efficiency values, gently sloping cumulative-intrusion capillary-pressure curves, and high porosity values. Petrofacies IV includes 11 samples, mostly recrystallized neritic carbonates, that have small throats, leptokurtic throat-size distributions, high recovery efficiency values, convex cumulative-intrusion capillary-pressure curves, and low porosity values. Comparison of petrofacies assignment to core-, thin-section-, and smear-slide data, and to inferred depositional setting, suggests that pore systems in most samples from Holes 765C and 766A result from primary depositional features, whereas pore systems in samples from Hole 761C and one sample from Hole 765C have been strongly influenced by diagenetic processes. For Hole 761C, prediction of petrophysical parameters should be most successful if based on diagenetic facies patterns. By contrast, the distribution of favorable reservoir facies and of permeability barriers in less highly altered rocks collected from Holes 765C and 766A is related to depositional patterns. Recovery efficiency is inversely related to both porosity and median throat size for the present data set. This relationship is similar to that observed for carbonates of the lower Paleozoic Hunton Group and the Ordovician Ellenburger dolomite, but opposite of that observed for some other ancient carbonates. The coarse deposits of the massive basal units of turbidites are petrophysically distinct and form a coherent petrophysical group (Petrofacies I) with substantial reservoir potential. Two samples assigned to Petrofacies I have extremely large throats (median throat size at least 4 ?m, and at least six times that of any other sample) and therefore high permeability values. These two samples come from thin, coarse turbidites that lack or have poorly developed fine divisions and are interpreted to have been deposited on channeled suprafan lobes in a proximal mid-fan setting. The restriction of extremely high permeability values to a single depositional facies suggests that careful facies mapping of deep-sea fans in a deliberate search for such coarse turbidites could dramatically enhance the success of exploration for aquifers or hydrocarbon reservoirs. Such reservoirs should have substantial vertical heterogeneity. They should have high lateral permeability values but low vertical permeability values, and reservoir sections should include numerous thin units having widely differing petrophysical characteristics.
Resumo:
Antarctic ecosystems are at risk from the introduction of invasive species. The first step in the process of invasion is the transportation of alien species to Antarctic in a viable state. However, the effect of long-distance human-mediated dispersal, over different time-scales, on propagule viability is not well known. We assessed the viability of Poa trivialis seeds transported to Antarctica from the UK, South Africa and Australia by ship or by ship and aircraft. Following transportation to the Antarctic Treaty area, no reduction in seed viability was found, despite journey times lasting up to 284 days and seeds experiencing temperatures as low as -1.5°C. This work confirms that human-mediated transport may overcome the dispersal barrier for some propagules, and highlights the need for effective pre-departure biosecurity measures.
Resumo:
Analysis of the palynofacies and miospore thermal alteration indices (TAI) of sediments from ODP Site 808 in the Nankai Trough was undertaken to determine (1) the source, depositional environment, and diagenesis of organic matter in the accreted sediments, and (2) the thermal structure and history of the prism and its relationship to fluid flow. Using the Hartax classification system, two palynofacies were recognized in the sedimentary sequence. Facies 1 occurs within the upper 600 m of trench-wedge turbidites (sedimentation rate > 1 km/m.y.) and contains >50% inertite particles. The rest of the assemblage is dominated by well-preserved phytoclasts and contains small amounts of poorly preserved phytoclasts and well-preserved scleratoclasts. Facies 2 occurs within the Shikoku Basin hemipelagites (600-1300 m below seafloor; sedimentation rate <150 m/m.y.) and contains over two-thirds inertite particles. The rest of the assemblage is dominated by poorly preserved phytoclasts. Miospores and marine phytoplankton compose only a small percentage of both palynofacies. Degraded organic matter is most noticeable in Facies 2, whereas its presence in Facies 1 is overshadowed by the high influx of well-preserved primary organic matter. Most of the degraded organic matter and inertite is interpreted to be reworked. Some of the degraded organic matter may be primary, and may have experienced more biodegradation and thermal alteration in Facies 2 than in Facies 1. TAI values indicate an immature stage of organic maturation (< 2) down to about 900 mbsf. Below this, samples show an increase with depth to a mature stage, reaching peak levels of about 3 just above basement. Samples from within the thrust fault and decollement zones do not show levels of maturity significantly greater than those of surrounding samples, leaving uncertain whether hot fluids have migrated along these fault boundaries in the past.
Resumo:
During three Antarctic expeditions (2004, ANT XXI-4 and XXII-2; 2006, ANT XXIII-6) with the German research icebreaker R/V Polarstern, six different amphipod species were recorded under the pack ice of the Weddell Sea and the Lazarev Sea. These cruises covered Austral autumn (April), summer (December) and winter (August) situations, respectively. Five of the amphipod species recorded here belong to the family Eusiridae (Eusirus antarcticus, E. laticarpus, E. microps, E. perdentatus and E. tridentatus), while the last belongs to the Lysianassidea, genus Cheirimedon (cf. femoratus). Sampling was performed by a specially designed under-ice trawl in the Lazarev Sea, whereas in the Weddell Sea sampling was done by scuba divers and deployment of baited traps. In the Weddell Sea, individuals of E. antarcticus and E. tridentatus were repeatedly observed in situ during under-ice dives, and single individuals were even found in the infiltration layer. Also in aquarium observations, individuals of E. antarcticus and E. tridentatus attached themselves readily to sea ice. Feeding experiments on E. antarcticus and E. tridentatus indicated a carnivorous diet. Individuals of the Lysianassoid Cheirimedon were only collected in baited traps there. Repeated conventional zooplankton hauls performed in parallel to this study did not record any of these amphipods from the water column. In the Lazarev Sea, E. microps, E. perdentatus and E. laticarpus were regularly found in under-ice trawls. We discuss the origin and possible sympagic life style of these amphipods.
Resumo:
Accurately quantifying deep-sea calcite dissolution is crucial for understanding the role of the marine carbonate system in regulating atmospheric pCO2 over millennia. We compare a foraminifer-fragmentation-based calcite dissolution proxy (Globorotalia menardii fragmentation index (MFI)) to Mg/Ca, Sr/Ca, and Mg/Sr in several species of deep dwelling planktonic foraminifers. We conducted microfossil and geochemical analyses on the same core top samples taken at different depths on the Ontong Java Plateau to maximize the dissolution signal and minimize the temperature overprint on our data. We also compare elemental ratios from planktonic foraminifer tests to modern bottom water [CO3]2- undersaturation and model-derived estimates of percent calcite dissolved in deep-sea sediments. We find clear linear decreases in Mg/Ca or Mg/Sr in G. menardii and Pulleniatina obliquiloculata with increasing (1) bottom water [CO3]2- undersaturation, (2) percent calcite dissolved in sediments calculated with biogeochemical modeling, (3) MFI, and (4) percent calcite dissolved derived from MFI. These findings lend further support to MFI as a calcite dissolution proxy for deep-sea sediments. In contrast, we find no significant correlation between Sr/Ca and independent dissolution indicators. Our results suggest that Mg/Ca and Mg/Sr from deep dwelling foraminifers could potentially be used as calcite dissolution proxies in combination with independent water temperature estimates. Likewise, establishing the relationship between MFI and dissolution-induced changes in the Mg/Ca of surface-dwelling foraminifers could provide a tool to correct Mg/Ca-derived sea surface temperature reconstructions for calcite dissolution.
Resumo:
In colonial species, it is often assumed that locations in the center of the colony are of highest quality and provide highest breeding success. We tested this prediction, known as the "central-periphery model," in a King Penguin colony in the subantarctic Crozet Archipelago. Breeding activity and survival of 150 penguins, fitted with transponder tags, were monitored over an entire breeding season. Among these 150 birds, 50 bred on the slope at the upper periphery of the colony, where the rates of predation and parasitism by ticks were high. Fifty birds bred in the center of the colony, where rates of predation and tick parasitism were low, and 50 bred at the lower end of the colony, where the rate of tick parasitism was low but predation and flooding were important risks. We predicted that the center of the colony should provide the safest breeding place and consequently be characterized by the highest breeding success and be used by the highest-quality individuals. Yet we found that penguins breeding in the center of the colony had the same breeding success as those at both peripheral locations. In addition, penguins breeding on the upper slope had a higher survival rate than penguins breeding at the center or bottom of the slope and were likely of higher quality. Our study does not support the central-periphery model and emphasizes the complexity behind the relationships among breeding site, breeding success, and individual quality.
Resumo:
AMS radiocarbon ages have been determined on terrestrial macrofossils selected from the annually laminated sediments of lake Holzmaar (Germany). The radiocarbon chronology of this lake covers the last 12.6 ka. Comparison of the radiocarbon dated varve chronology with tree ring data shows that an additional 878 years have to be added to the varve chronology. The corrected 14C varve chronology of Holzmaar reaches back to ca. 13.8 ka cal. BP and compares favourably with the results from Soppensee (Switzerland) (Hajdas et al., 1993, doi:10.1007/BF00209748). The corrected ages for the onset and the end of the Younger Dryas biozone are 11,940 cal. BP and 11,490 cal. BP, respectively. The ash layer of the Laacher See volcanic eruption is dated at 12,201 ± 224 cal. BP and the Ulmener Tephra layer is dated at 10,904 cal. BP.