736 resultados para TROPICAL SOUTH-ATLANTIC


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DSDP Leg 73 sediment cores allow direct calibrations of magnetostratigraphy and biostratigraphy for much of the latest Cretaceous to Cenozoic in the mid-latitude South Atlantic Ocean. A complete record of the Cenozoic was not obtained, however, because strong dissolution, poor core recovery and intense core disturbance have masked the biostratigraphy or magnetostratigraphy over some intervals of all recovered sections. DSDP Leg 73 results show the following correlations: Early/middle Miocene in Chron 16 Oligocene/Miocene within Subchron C6CN Eocene/Oligocene within Subchron C13R Middle/late Eocene top of Chron C17 Early/late Paleocene top of Subchron C27N Cretaceous/Tertiary within Subchron C29R

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluxes of lithogenicmaterial and fluxes of three palaeo productivity proxies (organic carbon, biogenic opal and alkenones) over the past 100,000 years were determined using the 230Th-normalization method in three sediment cores from the Subantarctic South Atlantic Ocean. Features in the lithogenic flux record of each core correspond to similar features in the record of dust deposition in the EPICA Dome C ice core. Biogenic fluxes correlate with lithogenic fluxes in each sediment core. Our preferred interpretation is that South American dust, most probably from Patagonia, constitutes a major source of lithogenic material in Subantarctic South Atlantic sediments, and that past biological productivity in this region responded to variability in the supply of dust, probably due to biologically available iron carried by the dust. Greater nutrient supply as well as greater nutrient utilization (stimulated by dust) contributed to Subantarctic productivity during cold periods, in contrast to the region south of the Antarctic Polar Front (APF), where reduced nutrient supply during cold periods was the principal factor limiting productivity. The anti-phased patterns of productivity on opposite sides of the APF point to shifts in the physical supply of nutrients and to dust as cofactors regulating productivity in the Southern Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle-Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between V78 and V71 m composite depth extending from the Early Miocene to the latest Miocene-Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene-Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene-Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ocean plays a major role in the global carbon cycle, and attempts to reconstruct past changes in the marine carbonate system are increasing. The speciation of dissolved uranium is sensitive to variations in carbonate system parameters, and previous studies have shown that this is recorded in the uranium-to-calcium ratio (U/Ca) of the calcite shells of planktonic foraminifera. Here we test whether U/Ca ratios of deep-sea benthic foraminifera are equally suited as an indicator of the carbonate system. We compare U/Ca in two common benthic foraminifer species (Planulina wuellerstorfi and Cibicidoides mundulus) from South Atlantic core top samples with the calcite saturation state (Delta [CO3**2-] = [CO3**2-]in situ - [CO3**2-]sat) of the ambient seawater and find significant negative correlations for both species. Compared with planktonic foraminifera, the sensitivity of U/Ca in benthic foraminifera to changes in Delta [CO3**2-] is about 1 order of magnitude higher. Although Delta [CO3**2-] exerts the dominant control on the average foraminiferal U/Ca, the intertest and intratest variability indicates the presence of additional factors forcing U/Ca.