213 resultados para TOT
Resumo:
Precipitation has a larger variability than temperature in tropical monsoon regions, thus it is an important climate variable. However, reconstructions of long-term rainfall histories are scarce because of the lack of reliable proxies. Here we document that iron oxide minerals, specifically the ratio of hematite to goethite (Hm/Gt), is a reasonable precipitation proxy. Using diffuse reflectance spectrophotometry, we measured samples from Ocean Drilling Program (ODP) 1143 drilling site (9°21.72'N, 113°17.11'E, 2777 m water depth) for hematite and goethite, whose formation processes are favored by opposing climate conditions. In order to determine the content of hematite and goethite we produced a set of calibration samples by removing the iron oxides to generate the natural matrix to which hematite and goethite in known percentages were added. From these calibration samples we developed a transfer function for determining hematite and goethite concentration from a sample's spectral reflectance. Applying this method to ODP 1143 sediments (top 34 m of a 510 m core with sampling interval of 10 cm) we were able to reconstruct a continuous precipitation history for SE Asia of the past 600 kyr using the Hm/Gt ratio as a proxy of the precipitation variability of Asian monsoon. The reliability of this Hm/Gt proxy is corroborated by its consistency with the stalagmite delta18O data from South China. Comparing long-term Hm/Gt records with the surface temperature gradient of equatorial Pacific Ocean, we found that monsoon precipitation and El Niño are correlated for the last 600 kyr. The development of El Niño-like conditions decreased SE Asia precipitation, whereas precipitation increases in response to La Niña intensification
Resumo:
Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.
Resumo:
The efficiency of the biological pump of carbon to the deep ocean depends largely on the biologically mediated export of carbon from the surface ocean and its remineralization with depth. Global satellite studies have primarily focused on chlorophyll concentration and net primary production (NPP) to understand the role of phytoplankton in these processes. Recent satellite retrievals of phytoplankton composition now allow for the size of phytoplankton cells to be considered. Here, we improve understanding of phytoplankton size structure impacts on particle export, remineralization and transfer. Particulate organic carbon (POC) flux observations from sediment traps and 234Th are compiled across the global ocean. Annual climatologies of NPP, percent microplankton, and POC flux at four time series locations and within biogeochemical provinces are constructed, and sinking velocities are calculated to align surface variables with POC flux at depth. Parameters that characterize POC flux vs. depth (export flux ratio, labile fraction, remineralization length scale) are then fit to the aligned dataset. Times of the year dominated by different size compositions are identified and fit separately in regions of the ocean where phytoplankton cell size showed enough dynamic range over the annual cycle. Considering all data together, our findings support the paradigm of high export flux but low transfer efficiency in more productive regions and vice versa for oligotrophic regions. However, when parsing by dominant size class, we find periods dominated by small cells to have both greater export flux and lower transfer efficiency than periods when large cells comprise a greater proportion of the phytoplankton community.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
Avian ecosystem services such as the suppression of pests are considered being of high ecological and economic importance in a range of ecosystems, especially in tropical agroforestry. But how bird predation success is related to the diversity and composition of the bird community, as well as local and landscape factors, is poorly understood. The author quantified arthropod predation in relation to the identity and diversity of insectivorous birds, using experimental exposure of artificial, caterpillar-like prey on smallholder cacao agroforestry systems, differing in local shade management and distance to primary forest. The bird community was assessed using both mist netting (targeting on active understory insectivores) and point count (higher completeness of species inventories) sampling. The study was conducted in a land use dominated area in Central Sulawesi, Indonesia, adjacent to the Lore Lindu National Park. We selected 15 smallholder cacao plantations as sites for bird and bat exclosure experiments in March 2010. Until July 2011, we recorded several data in this study area, including the bird community data, cacao tree data and bird predation experiments that are presented here. We found that avian predation success can be driven by single and abundant insectivorous species, rather than by overall bird species richness. Forest proximity was important for enhancing the density of this key species, but did also promote bird species richness. The availability of local shade trees had no effects on the local bird community or avian predation success. Our findings are both of economical as well as ecological interest because the conservation of nearby forest remnants will likely benefit human needs and biodiversity conservation alike.
Resumo:
Here we present results of the first comprehensive study of sulphur compounds and methane in the oligotrophic tropical West Pacific Ocean. The concentrations of dimethylsuphide (DMS), dimethylsulphoniopropionate (DMSP), dimethylsulphoxide (DMSO), and methane (CH4), as well as various phytoplankton marker pigments in the surface ocean were measured along a north-south transit from Japan to Australia in October 2009. DMS (0.9 nmol/l), dissolved DMSP (DMSPd, 1.6 nmol/l) and particulate DMSP (DMSPp, 2 nmol/l) concentrations were generally low, while dissolved DMSO (DMSOd, 4.4 nmol/l) and particulate DMSO (DMSOp, 11.5 nmol/l) concentrations were comparably enhanced. Positive correlations were found between DMSO and DMSP as well as DMSP and DMSO with chlorophyll a, which suggests a similar source for both compounds. Similar phytoplankton groups were identified as being important for the DMSO and DMSP pool, thus, the same algae taxa might produce both DMSP and DMSO. In contrast, phytoplankton seemed to play only a minor role for the DMS distribution in the western Pacific Ocean. The observed DMSPp : DMSOp ratios were very low and seem to be characteristic of oligotrophic tropical waters representing the extreme endpoint of the global DMSPp : DMSOp ratio vs. SST relationship. It is most likely that nutrient limitation and oxidative stress in the tropical West Pacific Ocean triggered enhanced DMSO production leading to an accumulation of DMSO in the sea surface. Positive correlations between DMSPd and CH4, as well as between DMSO (particulate and total) and CH4, were found along the transit. We conclude that both DMSP and DMSO serve as substrates for methanogenic bacteria in the western Pacific Ocean.
Resumo:
Sediment traps were deployed inside the anoxic inner basin of Effingham Inlet and at the oxygenated mouth of the inlet from May 1999 to September 2000 in a pilot study to determine the annual depositional cycle and impact of the 1999-2000 La Niña event within a western Canadian inlet facing the open Pacific Ocean. Total mass flux, geochemical parameters (carbon, nitrogen, opal, major and minor element contents, and stable isotope ratios) and diatom assemblages were determined and compared with meteorological and oceanographic data. Deposition was seasonal, with coarser grained terrestrial components and benthic diatoms settling in the autumn and winter, coincident with the rainy season. Marine sedimentary components and abundant pelagic diatoms were coincident with coastal upwelling in the spring and summer. Despite the seasonal differences in deposition, the typical temperate-zone Thalassiosira-Skeletonema-Chaetoceros bloom succession was muted. A July 1999 total mass flux peak and an increase in biogenous components coincided with a rare bottom-water oxygen renewal event in the inlet. Likewise, there were cooler-than-average sea surface temperatures (SSTs) just outside the inlet, and unusually high abundances of a previously undescribed cool-water marine diatom (Fragilariopsis pacifica sp. nov.) within the inlet. Each of these occurrences likely reflects a response to the strong La Niña that followed the year after the strongest-ever recorded El Niño event of 1997-1998. By the autumn of 1999, SSTs had returned to average, and F. pacifica had all but disappeared from the remaining trap record, indicating that oceanographic conditions had returned to normal. Oxygenation events were not witnessed in the inlet in the years before or after 1999, suggesting that a rare oceanographic and climatic event was captured by this sediment trap time series. The data from this record can therefore be used as a benchmark for identifying anomalous environmental conditions on this coast.
Resumo:
The volume presents planktological and chemical data collected during cruise No. 51 of RV "Meteor" to the equatorial Atlantic (FGGE '79) from February to June 1979. A standard section along the meridian 22° W across the equator was sampled ten times between 2° S and 3° N. Together with a temperature and salinity profile, concentrations of oxygen, nutrients and chlorophyll a were analyzed in water samples down to a depth of 250 m. Solar radiation and light depths were measured for determination of primary productivity of the euphotic zone according to the simulated in situ method. Zooplankton biomass was estimated in 5 depth intervals down to 300 m by means of a multiple opening and closing net equipped with a mesh size of 100 µm.
Resumo:
High resolution palynological and geochemical data of sediment core GeoB 3910-2 (located offshore Northeast Brazil) spanning the period between 19 600 and 14 500 calibrated year bp (19.6-14.5 ka) show a land-cover change in the catchment area of local rivers in two steps related to changes in precipitation associated with Heinrich Event 1 (H1 stadial). At the end of the last glacial maximum, the landscape in semi-arid Northeast Brazil was dominated by a very dry type of caatinga vegetation, mainly composed of grasslands with some herbs and shrubs. After 18 ka, considerably more humid conditions are suggested by changes in the vegetation and by Corg and C/N data indicative of fluvial erosion. The caatinga became wetter and along lakes and rivers, sedges and gallery forest expanded. The most humid period was recorded between 16.5 and 15 ka, when humid gallery (and floodplain) forest and even small patches of mountainous Atlantic rain forest occurred together with dry forest, the latter being considered as a rather lush type of caatinga vegetation. During this humid phase erosion decreased as less lithogenic material and more organic terrestrial material were deposited on the continental slope of northern Brazil. After 15 ka arid conditions returned. During the humid second phase of the H1 stadial, a rich variety of landscapes existed in Northeast Brazil and during the drier periods small pockets of forest could probably survive in favorable spots, which would have increased the resilience of the forest to climate change.
Resumo:
The Rainbow Hydrothermal Field (36°N, Mid-Atlantic Ridge) is one of three presently known fields related to serpentinization of ultramafic rocks accompanied by formation of hydrogen- and methane rich solutions. Gas chromatographic and molecular gas chromatographic - mass spectrometric investigations of sulfide ores and sediments from this field confirmed predominantly biological nature of bitumoids related to high-temperature transformation of biomass of the hydrothermal biological community. At the same time ores of the Rainbow field contain significant amounts of compounds that are not directly related to biogenic synthesis. This fact suggests possibility of abiogenic synthesis of methane and even complex hydrocarbons during serpentinization of ultramafic rocks.
Resumo:
On the basis of lithologic, foraminiferal, seismostratigraphic, and downhole logging characteristics, we identified seven distinctive erosional unconformities at the contacts of the principal depositional sequences at Site 612 on the New Jersey Continental Slope (water depth 1404 m). These unconformities are present at the Campanian/Maestrichtian, lower Eocene/middle Eocene, middle Eocene/upper Eocene, upper Eocene/lower Oligocene, lower Oligocene/upper Miocene, Tortonian/Messinian, and upper Pliocene/upper Pleistocene contacts. The presence of coarse sand or redeposited intraclasts above six of the unconformities suggests downslope transport from the adjacent shelf by means of sediment gravity flows, which contributed in part to the erosion. Changes in the benthic foraminiferal assemblages across all but the Campanian/Maestrichtian contact indicate that significant changes in the seafloor environment, such as temperature and dissolved oxygen content, took place during the hiatuses. Comparison with modern analogous assemblages and application of a paleoslope model where possible, indicate that deposition took place in bathyal depths throughout the Late Cretaceous and Cenozoic at Site 612. An analysis of two-dimensional geometry and seismic fades changes of depositional sequences along U.S.G.S. multichannel seismic Line 25 suggests that Site 612 was an outer continental shelf location from the Campanian until the middle Eocene, when the shelf edge retreated 130 km landward, and Site 612 became a continental slope site. Following this, a prograding prism of terrigenous debris moved the shelf edge to near its present position by the end of the Miocene. Each unconformity identified can be traced widely on seismic reflection profiles and most have been identified from wells and outcrops on the coastal plain and other offshore basins of the U.S. Atlantic margin. Furthermore, their stratigraphic positions and equivalence to similar unconformities on the Goban Spur, in West Africa, New Zealand, Australia, and the Western Interior of the U.S. suggest that most contacts are correlative with the global unconformities and sea-level falls of the Vail depositional model.
Resumo:
Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ~100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.
Resumo:
The isotope-ratios of sulfur-components in several sedimentologically different cores of recent marine sediments from Kiel Bay (Baltic Sea) were investigated. In addition, quantitative determinations were made on total sulfur, sulfate, sulfide, chloride, organic carbon, iron and watercontent in the sediment or in the pore-water solution. The investigations gave the following results: 1. The sulfur in the sediment (about 0.3 -2 % of the dry sample) was for the most part introduced into the sediment after sedimentation. This confirms the results of Kaplan et al. (1963, doi:10.1016/0016-7037(63)90074-7). The yield of Sulfur from organic material is very small (in our samples about 5-10% of the total sulfur in the sediment). 2. The sulfur bound in the sediment is taken from the sulfate of the interstitial water. During normal sedimentation, the exchange of sulfate by diffusion significant for changes in the sulfur-content goes down to a sediment depth of 4-6 cm. In this way the sulfate consumed by reduction and formation of sulfide or pyrite is mostly replaced. The uppermost layer of the sediment is an partly open system for the sulfur. The diagenesis of the sulfur is allochemical. 3. The isotope-values of the sediment-sulfur are largely influenced by the sulfur coming into the sediment by diffusion and being bound by bacteriological reduction. Due to the prevailing reduction of 32S and reverse-diffusion of sulfate into the open sea-water, an 32S enrichment takes place in the uppermost layer of the sediment. delta34S-values in the sediment range between -15 and -35 ? while seawater-sulfate has +20 ?. No relationship could be established between sedimentological or chemical changes and isotope-ratios. In the cores, successive sandy and clayly layers showed no change in the delta-values. The sedimentation rate, however, seems to influence isotope-ratios. In one core with low sedimentationrates the delta34S-values varied between -29 and -33 ?, while cores with higher sedimentationrates showed values between -17 and -24 ?. 4. As sediment depth increases, the pore-water sulfate shows decreasing concentrations (in a depth of 30-40 cm we found between 20 and 70 % of the seawater-values), and increasing delta 34S-values (in one case reaching more than +60 ?). The concentration of sulfide in the pore-water increases with sediment-depth (reaching 80 mg S/l in one case). The (delta34S-values of the pore-water-sulfide in all cores show increases paralleling the sulfate sulfur, with a nearly constant delta-distance of 50-60 ? in all cores. This seems to confirm the genetic relationship between the two components.
Resumo:
Patterns of distribution and variations of group and monosaccharide compositions of carbohydrates in suspended matter of the Pacific Ocean were studied. It is shown that carbohydrate content of surface ocean waters depends on reproduction of organic matter by phytoplankton. Water-insoluble polysaccharides (average 77.9% of total) predominate in composition of carbohydrates in suspended matter. Water-soluble polysaccharides and oligosaccharides were detected in considerably smaller quantities (average 12.4 and 7.3% respectively). Free monosaccharides were not detected. The main sugars in all isolated groups of carbohydrates of suspended matter are hexoses, which account for 90.8% in oligosaccharides, 64.9% in water-soluble polysaccharides, and 69.8% in water-insoluble polysaccharides. Determination of monosaccharide composition of carbohydrates in suspension showed that apparently they basically consist of mixture of reserve and structural polysaccharides (or their residues) of phytoplankton organisms.