181 resultados para Site investigations
Resumo:
The late Miocene to early Pliocene carbonate-rich sediments recovered at Integrated Ocean Drilling Program (IODP) Site U1338 during the Expedition 320/321 Pacific Equatorial Age Transect (PEAT) program contain abundant calcareous nanno- and microfossils. Geochemical proxies from benthic and planktonic foraminiferal and coccolithophore calcite could be very useful at this location; however, good preservation of the calcite is crucial for the proxies to be robust. Here, we evaluate the preservation of specific benthic and planktonic foraminifer species and coccolithophores in fine fraction sediment at Site U1338 using backscattered electron (topography mode) scanning electron microscopy (BSE-TOPO SEM). Both investigated foraminiferal species, Cibicidoides mundulus and Globigerinoides sacculifer, have undergone some alteration. The C. mundulus show minor evidence for dissolution, and only some specimens show evidence of overgrowth. The Gs. sacculifer show definite signs of alteration and exhibit variable preservation, ranging from fair to poor; some specimens show minor overgrowth and internal recrystallization but retain original features such as pores, spine pits, and internal test-wall growth structure, whereas in other specimens the recrystallization and overgrowth disguise many of the original features. Secondary electron and BSE-TOPO SEM images show that coccolith calcite preservation is moderate or moderate to poor. Slight to moderate etching has removed central heterococcolith features, and a small amount of secondary overgrowth is also visible. Energy dispersive spectroscopy analyses indicate that the main sedimentary components of the fine fraction sediment are biogenic CaCO3 and SiO2, with some marine barite. Based on the investigations in this data report, geochemical analyses on benthic foraminifers are unlikely to be affected by preservation, although geochemical analyses on the planktonic foraminifers should be treated cautiously because of the fair to poor and highly variable preservation.
Resumo:
Studies of thermal tolerance in marine ectotherms are key in understanding climate effects on ecosystems; however, tolerance of their larval stages has rarely been analyzed. Larval stages are expected to be particularly sensitive. Thermal stress may affect their potential for dispersal and zoogeographical distribution. A mismatch between oxygen demand and the limited capacity of oxygen supply to tissues has been hypothesized to be the first mechanism restricting survival at thermal extremes. Therefore, thermal tolerance of stage zoea I larvae was examined in two populations of the Chilean kelp crab Taliepus dentatus, which are separated by latitude and the thermal regime. We measured temperature-dependent activity, oxygen consumption, cardiac performance, body mass and the carbon (C) and nitrogen (N) composition in order to: (1) examine thermal effects from organismal to cellular levels, and (2) compare the thermal tolerance of larvae from two environmental temperature regimes. We found that larval performance is affected at thermal extremes indicated by decreases in activity, mainly in maxilliped beat rates, followed by decreases in oxygen consumption rates. Cardiac stroke volume was almost temperature-independent. Through changes in heart rate, cardiac output supported oxygen demand within the thermal window whereas at low and high temperature extremes heart rate declined. The comparison between southern and central populations suggests the adaptation of southern larvae to a colder temperature regime, with higher cardiac outputs due to increased cardiac stroke volumes, larger body sizes but similar body composition as indicated by similar C:N ratios. This limited but clear differentiation of thermal windows between populations allows the species to widen its biogeographical range.
Resumo:
Secular variations in geochemistry and Nd isotopic data have been documented in sediment samples at ODP Site 1148 in the South China Sea. Major and trace elements show significant changes at ca. 29.5 Ma and 26-23 Ma, whereas epsilon-Nd values show a single change at ca. 26-23 Ma. Increases in Al/Ti, Al/K, Rb/Sr, and La/Lu ratios and a decrease in the Th/La ratio of the sediments beginning at 29.5 Ma are consistent with more intense chemical weathering in the source region. The abrupt change in Nd isotopes and geochemistry at ca. 26-23 Ma coincides with a major discontinuity in the sedimentology and physical properties of the sediments, implying a drastic change in sedimentary provenance and environment at the drill site. Comparison of the Nd isotopes of sediments from major rivers flowing into the South China Sea suggests that pre-27 Ma sediments were dominantly derived from a southwestern provenance (Indochina-Sunda Shelf and possibly northwestern Borneo), whereas post-23 Ma sediments were derived from a northern provenance (South China). This change in provenance from southwest to north was largely caused by ridge jumping during seafloor spreading of the South China Sea, associated with a southwestward expansion of the ocean basin crust and a global rise in sea level. Thus, the geochemical and Nd isotopic changes in the sediments at ODP Site 1148 are interpreted as a response to a major plate reorganization in SE Asia at ca. 25 Ma.
Resumo:
Occurrence of deep-sea dolomites has been reported from numerous settings (for discussion see Lumsden, 1988). Different authors agree that dolomite formation in the pelagic realm is a relatively early diagenetic process (e.g., Jorgensen, 1983; Shimmield and Price, 1984; Kablanow et al., 1984; Kulm et al., 1984). Baker and Burns (1985) suggest that most of the pelagic dolomites formed within a few tens of meters below the seafloor within the zone of microbial sulfate reduction. According to Fuechtbauer and Richter (1988), dolomite can form in the deep-sea at a minimum temperature of 10°C. Other deep-sea dolomites are products of fluids derived from underlying evaporites or submarine weathering of basalts (Garrison, 1981). In some cases (Mullins et al., 1985; Dix and Mullins, 1988; Mullins et al., 1988), the existence of dolomite is linked to disconformities and its formation may have resulted from circulation of seawater through the sediment during prolonged exposure (Dix and Mullins, 1988, p. 287). At Site 768 (Fig. 1), lithified carbonate layers, some containing variable amounts of dolomite, occur below 201 mbsf (Miocene). These beds alternate with unconsolidated or semi-lithified marl layers interbedded in clays and siliciclastic turbidites. The irregular depth distribution of the limestone beds and the variation in preservation and recrystallization of the calcareous microfaunas suggest that lithification of carbonates at Site 768 not only reflects burial diagenesis as described by Garrison (1981) and others, but in part may be a selective, early diagenetic process. The different types and distribution of the dolomite additionally seem to support this assumption. The purpose of this report is to document the occurrence and textural nature of the dolomite at Site 768. Methods used were analyses of stained thin sections (Alizarin S and Ferrocyanide) and studies with the scanning electron microscope. No geochemical analyses (e.g., stable isotopes) were carried out; they will be the subject of further investigations.