164 resultados para Saranac Lake Region (N.Y.)--Remote-sensing maps.
Resumo:
Lake ice change is one of the sensitive indicators of regional and global climate change. Different sources of data are used in monitoring lake ice phenology nowadays. Visible and Near Infrared bands of imagery (VNIR) are well suited for the observation of freshwater ice change, for example data from AVHRR and MODIS. Active and passive microwave data are also used for the observation of lake ice, e.g., from satellite altimetry and radiometry, backscattering coefficient from QuickSCAT, brightness temperature (Tb) from SSM/I, SMMR, and AMSR-E. Most of the studies are about lake ice cover phenology, while few studies focus on lake ice thickness. For example, Hall et al. using 5 GHz (6 cm) radiometer data showed a good relationship between Tb and ice thickness. Kang et al. found the seasonal evolution of Tb at 10.65 GHz and 18.7 GHz from AMSR-E to be strongly influenced by ice thickness. Many studies on lake ice phenology have been carried out since the 1970s in cold regions, especially in Canada, the USA, Europe, the Arctic, and Antarctica. However, on the Tibetan Plateau, very little research has focused on lake ice-cover change; only a small number of published papers on Qinghai Lake ice observations. The main goal of this study is to investigate the change in lake ice phenology at Nam Co on the Tibetan Plateau using MODIS and AMSR-E data (monitoring the date of freeze onset, the formation of stable ice cover, first appearance of water, and the complete disappearance of ice) during the period 2000-2009.
Resumo:
In this study, ICESat altimetry data are used to provide precise lake elevations of the Tibetan Plateau (TP) during the period of 2003-2009. Among the 261 lakes examined ICESat data are available on 111 lakes: 74 lakes with ICESat footprints for 4-7 years and 37 lakes with footprints for 1 -3 years. This is the first time that precise lake elevation data are provided for the 111 lakes. Those ICESat elevation data can be used as baselines for future changes in lake levels as well as for changes during the 2003-2009 period. It is found that in the 74 lakes (56 salt lakes) examined, 62 (i.e. 84%) of all lakes and 50 (i.e. 89%) of the salt lakes show tendency of lake level increase. The mean lake water level increase rate is 0.23 m/year for the 56 salt lakes and 0.27 m/year for the 50 salt lakes of water level increase. The largest lake level increase rate (0.80 m/year) found in this study is the lake Cedo Caka. The 74 lakes are grouped into four subareas based on geographical locations and change tendencies in lake levels. Three of the four subareas show increased lake levels. The mean lake level change rates for subareas I, II, III, IV, and the entire TP are 0.12, 0.26, 0.19, -0.11, and 0.2 m/year, respectively. These recent increases in lake level, particularly for a high percentage of salt lakes, supports accelerated glacier melting due to global warming as the most likely cause.
Resumo:
Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.