104 resultados para Sand coastal plain vegetation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy or high-specific gravity minerals make up a small but diagnostic component of sediment that is well suited for determining the provenance and distribution of sediment transported through estuarine and coastal systems worldwide. By this means, we see that surficial sand-sized sediment in the San Francisco Bay Coastal System comes primarily from the Sierra Nevada and associated terranes by way of the Sacramento and San Joaquin Rivers and is transported with little dilution through the San Francisco Bay and out the Golden Gate. Heavy minerals document a slight change from the strictly Sierran-Sacramento mineralogy at the confluence of the two rivers to a composition that includes minor amounts of chert and other Franciscan Complex components west of Carquinez Strait. Between Carquinez Strait and the San Francisco Bar, Sierran sediment is intermingled with Franciscan-modified Sierran sediment. The latter continues out the Gate and turns southward towards beaches of the San Francisco Peninsula. The Sierran sediment also fans out from the San Francisco Bar to merge with a Sierran province on the shelf in the Gulf of the Farallones. Beach-sand sized sediment from the Russian River is transported southward to Point Reyes where it spreads out to define a Franciscan sediment province on the shelf, but does not continue southward to contribute to the sediment in the Golden Gate area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paleo-oceanography of the southeastern North Atlantic Ocean during the last 150,000 yr has been studied using biogenous and terrigenous components of hemipelagic sediments sampled close to the northwest African continental margin. Variations of oxygen isotope ratios in shells of benthic calcareous foraminifers in two cores allow the assignment of absolute ages to these cores (in the best case at 1000 yr increments). The uncorrected bulk sedimentation rates of the longest core range from 3.4 to 7.6 cm/ 1000 yr during Interglacial conditions, and from 6.5 to 9.9 cm/1000 yr during Glacial conditions; all other cores have given results of the same order of magnitude, but with generally increasing values towards the continental edge. The distribution of sediment components allow us to make inferences about paleo-oceanographic changes in this region. Frequencies of biogenic components from benthic organisms, oxygen isotope ratios measured in benthic calcareous foraminiferal shells, the total carbonate contents of the sediment and distributions of biogenic components from planktonic organisms often fluctuate in concert. However, all fluctuations which can be attributed to changes of the bottom water masses (North Atlantic Deep Water) seem to precede by several thousand years those which can be linked to changes of the surface water mass distributions or to changes of the climate over the neighboring land masses. Late Quaternary planktonic foraminiferal assemblages in the cores from the northwest African continental margin can be defined satisfactorily in the way that distributions of assemblages found in sediment surface samples from the northeast Atlantic Ocean have been explained. The distributions of assemblages in the northwest African cores can also be used to estimate past sea surface temperatures and salinities. The downcore record of these estimates reveals two warm periods during the last 150,000 yr, the lower one corresponding to the oxygen isotope stage 5 e (equivalent to the Eemian proper in Europe), the upper one to the younger half of the Holocene. Winter surface water temperatures during oxygen isotope stages 6, 4, 3, and 2 are remarkably constant in most cores, while summer sea surface temperatures during stage 3 reach values comparable to those of the warm periods during the Late Holocene and Eemian. Estimated winter sea surface temperatures range from > 16 °C to < 11°C, the summer sea surface temperatures from > 22 °C to < 15 °C during the last 150,000 yr. Estimates of the winter sea surface salinities fluctuate between 36.6? and 35.5?, the higher values being restricted to the warm periods since the penultimate Glacial. Estimates for sea surface temperatures and salinities for two cores from the center of today's coastal upwelling region show less pronounced fluctuations than the record of the open ocean cores in the case of the station 12379 off Cape Barbas, more pronounced in the case of station 12328 off Cape Blanc. Seasonal differences between winter and summer sea surface temperatures derived from the estimated temperatures are today more pronounced in the boundary region of the ocean to the continent than further away from the continent. The differences are generally higher during warm climatic periods of the last 150,000 yr than during cooler ones. The abundance of terrigenous grains in the coarse fractions generally decreases with increasing distance from the continental edge, and also from south to north. The dominant portion of the terrigenous detritus is carried out into the ocean during the relatively cool climatic periods (stage 6, 4, later part of stage 3, stage 2 and oldest part of stage 1). The enhanced precision of dating combined with the stratigraphic resolution of these high deposition rate cores make it clear that the peaks of the terrigenous input off this part of the northwest African continental margin occur simultaneously with times of rapid sea level fluctuations resulting from large volume changes of the large Glacial ice sheets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sand and sandstone compositions from different types of basins reflect provenance terranes governed by plate tectonics. One hundred and one thin sections of Upper Miocene to Holocene sand-sized material were examined from DSDP/IPOD Sites in the North Pacific Ocean and the Bering Sea. The Gazzi-Dickinson point-counting method was used to establish compositional characteristics of sands from different tectonic settings. Continental margin forearc sands from the western North America continental margin arc system are clearly different from backarc/marginal-sea sands from the Aleutian intraoceanic arc system. The forearc sands have average QFL percentages of 29-42-29, LmLvLst percentages of 32-34-34, 3 Fmwk%M and 0.82 P/F. Aleutian backarc sands have average QFL percentages of 8-22-69. LmLvLst percentages of 9-85-6, 0.5 Fmwk%M and 0.96 P/F. A trend of increasing QFL%Q and decreasing LmLvLst%Lv westward in the backarc region of the Aleutian Ridge reflects the influence of the Asiatic continental margin. Aleutian backarc sands without continental influence have average QFL percentages of 1-20-79, LmLvLst percentages of 1-98-1, 0 Fmwk%M and 0.99 P/F. Of the continental margin forearc samples, sands on the Astoria Fan (west of the Oregon-Washington trench) contain the highest LmLvLst%Lv and lowest P/F; sands from mixed transform-fault and trench settings (Delgada Fan and Gulf of Alaska samples) have slightly higher Qp/Q (0.03); and sands from the Pacific-Juan de Fuca-North America triple junction have the highest Fmwk%M. Delgada Fan and Gulf of Alaska sands have average QFL percentages of 27-38-35, LmLvLst percentages of 37-26-37, 2 Fmwk%M and 0.86 P/F. Astoria Fan sands have average QFL percentages of 35-41-24, LmLvLst percentages of 30-47-23, 3 Fmwk%M and 0.74 P/F. The triple-junction sands have average QFL percentages of 28-59-13, LmLvLst percentages of 25-26-49, 9 Fmwk%M and 0.87 P/F. The petrologic data from the modern ocean basins examined in this study can provide useful analogs for interpretation of ancient oceanic sequences. Our data suggest some refinements of, but generally substantiate, existing petrologic models relating sandstone composition to tectonic setting.