136 resultados para SW-CMM
Resumo:
Abundant, generally well-preserved radiolarians from Sites 737, 744, 745, 746, 747, 748, and 751 were used in stratigraphic analysis of Neogene, and particularly middle Miocene to Holocene, Kerguelen Plateau sediments. The composite Kerguelen section is more complete than the Weddell Sea sections recovered by Leg 113, and the radiolarians are better preserved. Leg 113 radiolarian zonations of Weddell Sea sites were applicable with only slight modification, and three new zones - Siphonosphaera vesuvius, Acrosphaeral labrata, and Amphymenium challengerae - are proposed for the latest Miocene. Geologic age estimates are given for all radiolarian zones used. Major hiatuses affecting most sites were seen within the middle Miocene, in the latest Miocene, and latest Pliocene. Five new species are described: Acrosphaera? labrata, Acrosphaera? mercurius, Siphonosphaera vesuvius, Actinomma? magnifenestra, and Helotholus? haysi.
Resumo:
Through scanning electron microscope analysis of sediment microfabric, we have evaluated variations in high-resolution shipboard physical properties (index properties and shear strength), sediment components (smear slide determinations), and shore-based calcium carbonate and biogenic silica data from Site 751 (Kerguelen Plateau). The stratigraphic section at this site records a change in biogenic ooze composition from predominantly calcareous (nannofossil) to siliceous (diatom) ooze from ~23 Ma to the present, reflecting expansion of Antarctic water masses during the late Neogene. The profound change in physical properties and sediment character at 40.1 mbsf (~5-6 Ma) evidently records the northward movement of the Polar Front and a change in absolute accumulation rates of sediment at this site. Trends in geotechnical properties with depth at Site 751 allowed us to subdivide the sedimentary column into a number of geotechnical units that reflect changes in depositional and postdepositional processes with time. Geotechnical properties are sensitive to changing sedimentary inputs of primarily siliceous and calcareous microfossils. This allows us to study the physical nature of biostratigraphically-identified hiatuses and variations in environmental conditions linked to the migration of the Polar Front across this region. The analysis of geotechnical properties permits a more detailed division of the sedimentary column than is possible from shipboard lithologic descriptions alone. Our study of the sedimentary microfabric indicates that randomly oriented, elongate pennate diatom valves compose the sediments with highest porosity and water content values, and the lowest density values (wet bulk, dry bulk, and grain density). Conversely, sediments composed of nannofossils and disassociated nannofossil crystallites and little or no siliceous remains have the lowest porosity and water content values, and the highest density values. Samples of mixed siliceous/calcareous composition have intermediate physical property values, but these vary according to the nature of the sedimentary matrix and the state of preservation of individual skeletal elements.
Resumo:
The Palynology of two sections recovered during Leg 93 drilling by the Deep Sea Drilling Project in the continental rise along the western margin of the North Atlantic is reported. In Hole 603B at Site 603, the dinoflagellate stratigraphy indicates that the interval from Cores 603B-82 to 603B-26 ranges in age from late Berriasian to Santonian. The BlakeBahama Formation ranges from late Berriasian to Aptian. The Hatteras Formation ranges from Aptian to Cenomanian, although the uppermost part may be Turonian. Dinoflagellate evidence from the middle part of the Plantagenet Formation indicates an age from late Coniacian or early Santonian to Santonian within the interval of Cores 603B-28 to 603B-26. Magnetic polarity evidence of the stratigraphy of the Early Cretaceous for the western North Atlantic indicates a reliable correlation with the dinoflagellate zonation. The stratigraphic sequence of palynologically defined organic facies in carbonaceous claystone lithologies in Hole 603B shows that organic stratigraphic units consisting predominantly of fecal-pellet-derived, pelagic organic matter (xenomorphic facies) alternate with units consisting predominantly of terrigenous organic matter (tracheal and exinitic facies), corresponding to that described from other sites in the North Atlantic. A terrigenous organic facies is identified for the first time from the Plantagenet Formation. The claystone organic facies and major lithofacies are closely correlated. The tracheal and exinitic facies occur in carbonaceous terrigenous claystones and claystone turbidites associated with sandstone/siltstone terrigenous turbidites. The xenomorphic facies occurs in claystones within pelagic limestones lacking any turbidites, and in blackish, noncalcareous claystones which correlate in age with the marine-carbon-rich sapropels which are widespread in the North Atlantic Cenomanian. This facies also occurs with an admixture of terrigenous organic particles in the Blake-Bahama Formation, but the mixture is consistent with the submarine fan setting of this interval. The concentration of refractory organic matter (carbonized particles) in the micrinitic and carbonized tracheal facies is considered to be the result, at least in part, of the oxidation of sediment buried below a surface slowly accumulating pelagic clays below the carbonate compensation depth. The progressive increase in number of dinoflagellate species per stage through the Early Cretaceous (except for the late Barremian-Aptian) may have resulted indirectly from the generally progressive rise in global sea level during this time. At Site 605, the dinoflagellate stratigraphy across the Cretaceous/Tertiary boundary is remarkably close to that published from the Maestrichtian and Danian of Denmark. The Maestrichtian/Danian boundary is placed precisely within Section 605-66-1 by dinoflagellate evidence, agreeing with that predicted by other microfossils. The new dinoflagellate-cyst-based genus, Pierceites and its new species P. schizocystis, and the new combination P. ( = Trithyrodinium) pentagonum (May) are proposed. Diacanthum hollisteri Habib, type species of Diacanthum, is emended to accommodat e cysts with the archeopyle formulas P3'', 2P2''-3'', 2P3''-4'', and 3P2''-3''-4''.