376 resultados para RLIN records
Resumo:
We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
Resumo:
Instrumental climate observations provide robust records of global land and ocean temperatures during the twentieth century. Unlike for temperature, continuous salinity observations in the surface ocean are scarce prior to 1970, and the magnitude of salinity changes during the twentieth century is largely unknown. Surface ocean salinity is a major component in climate dynamics, as it influences ocean circulation and water mass formation. Here we present an annually resolved reconstruction of salinity variations in the surface waters of the western subtropical North Pacific Ocean since 1873, based on bimonthly records of d18O, Sr/Ca, and U/Ca in a coral from the Ogasawara Islands. The reconstruction indicates that an abrupt regime shift toward fresher surface ocean conditions occurred between 1905 and 1910. Observational atmospheric data suggest that the abrupt freshening was associated with a weakening of the winds that drive the Kuroshio Current system and the associated subtropical gyre circulation. We note that the abrupt early-twentieth-century freshening in the western subtropical North Pacific precedes abrupt climate change in the northern North Atlantic by a few years. The potential for abrupt regime shifts in surface ocean salinity should be considered in climate predictions for the coming decades.
Resumo:
The oxygen isotopic composition of ostracod shells in lakes has been used as a useful indicator in palaeolimnological research and has provided some important contributions to the understanding of lacustrine systems. Usually, the oxygen isotopic compositions of ostracods from the lake sediments are interpreted as changes in effective precipitation, temperature and evaporation/input water ratio in a sub-arid or arid area. Here, we compare a 150-year-long oxygen-isotope record that was derived from ostracod carbonate from the sediments of Lake Gahai in the Qaidam Basin with meteorological data (precipitation) and tree-ring evidence for changing precipitation. Our results show that the oxygen isotopic compositions of ostracod shells are related to precipitation over the past 150 years. In general, increased precipitation accompanied a shift to less positive d18O values in the lake water, and thus in the ostracod shells, whereas decreased precipitation coincided with the opposite in Lake Gahai over the past 150 years. Therefore, we conclude that the oxygen isotopic compositions of ostracod shells can be used to indicate changes in precipitation over a short time scale in Lake Gahai.
Resumo:
This dataset includes palaeomagnetic inclination directions and density, reflectance (CIEL*a*b*) and red intensity (RGB) measurements from 100 metres of diatomaceous lake sediments from the Oligocene/Miocene Foulden Maar, New Zealand.
Resumo:
Climate phenomena like the monsoon system, El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are interconnected via various feedback mechanisms and control the climate of the Indian Ocean and its surrounding continents on various timescales. The eastern tropical Indian Ocean is a key area for the interplay of these phenomena and for reconstructing their past changes and forcing mechanisms. Here we present records of upper ocean thermal gradient, thermocline temperatures (TT) and relative abundances of planktic foraminifera in core SO 189-39KL taken off western Sumatra (0°47.400' S, 99°54.510' E) for the last 8 ka that we use as proxies for changes in upper ocean structure. The records suggest a deeper thermocline between 8 ka and ca 3 ka compared to the late Holocene. We find a shoaling of the thermocline after 3 ka, most likely indicating an increased occurrence of upwelling during the late Holocene compared to the mid-Holocene which might represent changes in the IOD-like mean state of the Indian Ocean with a more negative IOD-like mean state during the mid-Holocene and a more positive IOD-like mean state during the past 3 ka. This interpretation is supported by a transient Holocene climate model simulation in which an IOD-like mode is identified that involves an insolation-forced long-term trend of increasing anomalous surface easterlies over the equatorial eastern Indian Ocean.