92 resultados para Quartz microstructures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of the scanning electron microscopic (SEM) analysis of quartz grains from a selection of samples at Site 1166. Ocean Drilling Program Leg 188 drilled Site 1166 on the Prydz Bay continental shelf, Antarctica, to document onset and fluctuations of East-Antarctic glaciation. This site recovered Upper Pliocene-Holocene glacial sediments directly above Cretaceous through Lower Oligocene sediments recording the transition from preglacial to early glacial conditions. SEM analysis of quartz grains at Site 1166 was used to characterize the glacial and preglacial sediments by their diagnostic textures. Angular edges, edge abrasion as well as arcuate to straight steps, are the most frequent features in glacial deposits. The highest frequency of grains with round edges is present in Middle-Late Eocene fluvio-deltaic sands. However, angular outlines, fractured plates with subparallel linear fractures and edge abrasion indicating glacier influence are also present. Preglacial carbonaceous mudstone and laminated gray claystone show distinctive high relief quartz grains and some chemical weathering on grain surfaces. The results of the microtextural analysis of quartz grains are used to verify some critical periods of ice sheet evolution, such as the transition from the East Antarctic preglacial to glacial conditions on the continental shelf from Middle/Late Eocene to Late Eocene/Early Oligocene time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment drifts on the continental rise are located proximal to the western side of the Antarctic Peninsula and recorded changes in glacial volume and thermal regime over the last ca. 15 m.y. At Ocean Drilling Program (ODP) Site 1101 (Leg 178), which recovered sediments back to 3.1 Ma, glacial-interglacial cyclicity was identified based on the biogenic component and sedimentary structures observed in X-radiographs, magnetic susceptibility and lithofacies descriptions. Glacial intervals are dominated by fine-grained laminated mud and interglacial units consist of bioturbated muds enriched in biogenic components. From 2.2 to 0.76 Ma, planktonic foraminifera and calcareous nannofossils dominate in the interglacials suggesting a shift of the Antarctic Polar Front (APF) to the south near the drifts. Prior to 2.2 Ma, cyclicity cannot be identified and diatoms dominate the biogenic component and high percent opal suggests warmer conditions south of the APF and reduced sea ice over the drifts. Analyses of the coarse-grained terrigenous fraction (pebbles and coarse sand) from Sites 1096 and 1101 record glaciers at sea-level releasing iceberg-rafted debris (IRD) throughout the last 3.1 m.y. Analyses of quartz sand grains in IRD with the scanning electron microscope (SEM) show an abrupt change in the frequency of occurrence of microtextures at ~1.35 Ma. During the Late Pliocene to Early Pleistocene, the population of quartz grains included completely weathered grains and a low frequency of crushing and abrasion, suggesting that glaciers were small and did not inundate the topography. Debris shed from mountain peaks was transported supraglacially or englacially allowing weathered grains to pass through the glacier unmodified. During glacial periods from 1.35-0.76 Ma, glaciers expanded in size. The IRD flux was very high and dropstones have diverse lithologies. Conditions resembling those at the Last Glacial Maximum (LGM) have been episodically present on the Antarctic Peninsula since ~0.76 Ma. Quartz sand grains show high relief, fracture and abrasion common under thick ice and the IRD flux is low with a more restricted range of dropstone lithologies.