565 resultados para Pumping stations
Resumo:
The combination of two research projects offered us the opportunity to perform a comprehensive study of the seasonal evolution of the hydrological structure and the circulation of the North Aegean Sea, at the northern extremes of the eastern Mediterranean. The combination of brackish water inflow from the Dardanelles and the sea-bottom relief dictate the significant differences between the North and South Aegean water columns. The relatively warm and highly saline South Aegean waters enter the North Aegean through the dominant cyclonic circulation of the basin. In the North Aegean, three layers of distinct water masses of very different properties are observed: The 20-50 m thick surface layer is occupied mainly by Black Sea Water, modified on its way through the Bosphorus, the Sea of Marmara and the Dardanelles. Below the surface layer there is warm and highly saline water originating in the South Aegean and the Levantine, extending down to 350-400 m depth. Below this layer, the deeper-than-400 m basins of the North Aegean contain locally formed, very dense water with different i/S characteristics at each subbasin. The circulation is characterised by a series of permanent, semi-permanent and transient mesoscale features, overlaid on the general slow cyclonic circulation of the Aegean. The mesoscale activity, while not necessarily important in enhancing isopycnal mixing in the region, in combination with the very high stratification of the upper layers, however, increases the residence time of the water of the upper layers in the general area of the North Aegean. As a result, water having out-flowed from the Black Sea in the winter, forms a separate distinct layer in the region in spring (lying between "younger" BSW and the Levantine origin water), and is still traceable in the water column in late summer.
Resumo:
Zooplankton was sampled by project RADIALES at Vigo (E3VI) and A Coruña (E2CO) between 1994 and 2006. Samples were collected using 50-cm diameter Juday-Bogorov (A Coruña) or 40-cm diameter bongo plankton nets (Vigo) equipped with 200-µm mesh size. Tows were double oblique from surface to near bottom (90 and 70 m in Vigo and A Coruña, respectively). All samples were collected between 10:00 and 14:00 o'clock (local time). Samples were preserved in 2-4% sodium borate-buffered formaldehyde. For the purpose of this study, the original coastal time series were categorized in copepods representative of crustacean zooplankton) and gelatinous plankton (medusae and tunicates). Medusae included Hydrozoans and Scyphozoa, and tunicates included salps, pyrosomes, doliolids, and appendicularia. Plankton identification and counts were performed by Ana Miranda and M. Teresa Álvarez-Ossorio for samples from Vigo and A Coruña, respectively. Different trends were found for gelatinous plankton in the two coastal sites, characterized by increases in either medusae or tunicates. Multiyear periods of relative dominance of gelatinous vs. copepod plankton were evident. In general, copepod periods were observed in positive phases of the main modes of regional climatic variability. Conversely, gelatinous periods occurred during negative climatic phases. However, the low correlations between gelatinous plankton and either climatic, oceanographic, or fishery variables suggest that local factors play a major role in their proliferations.