286 resultados para Photoluminescence. Zirconia. Rare earth. CPM
Resumo:
Despite its enormous extent and importance for global climate, the South Pacific has been poorly investigated in comparison to other regions with respect to chemical oceanography. Here we present the first detailed analysis of dissolved radiogenic Nd isotopes (epsilon-Nd) and rare earth elements (REEs) in intermediate and deep waters of the mid-latitude (~40°S) South Pacific along a meridional transect between South America and New Zealand. The goal of our study is to gain better insight into the distribution and mixing of water masses in the South Pacific and to evaluate the validity of Nd isotopes as a water mass tracer in this remote region of the ocean. The results demonstrate that biogeochemical cycling (scavenging processes in the Eastern Equatorial Pacific) and release of LREEs from the sediment clearly influence the distribution of the dissolved REE concentrations at certain locations. Nevertheless, the Nd isotope signatures clearly trace water masses including AAIW (Antarctic Intermediate Water) (average epsilon-Nd = -8.2 ± 0.3), LCDW (Lower Circumpolar Deep Water) (average epsilon-Nd = -8.3 ± 0.3), NPDW (North Pacific Deep Water) (average epsilon-Nd = -5.9 ± 0.3), and the remnants of NADW (North Atlantic Deep Water) (average epsilon-Nd = -9.7 ± 0.3). Filtered water samples taken from the sediment-water interface under the deep western boundary current off New Zealand suggest that boundary exchange processes are limited at this location and highlight the spatial and temporal variability of this process. These data will serve as a basis for the paleoceanographic application of Nd isotopes in the South Pacific.
Resumo:
Authigenic carbonates were collected from methane seeps at Hydrate Hole at 3113 m water depth and Diapir Field at 2417 m water depth on the northern Congo deep-sea fan during RV Meteor cruise M56. The carbonate samples analyzed here are nodules, mainly composed of aragonite and high-Mg calcite. Abundant putative microbial carbonate rods and associated pyrite framboids were recognized within the carbonate matrix. The d13C values of the Hydrate Hole carbonates range from -62.5 permil to -46.3 permil PDB, while the d13C values of the Diapir Field carbonate are somewhat higher, ranging from -40.7 permil to -30.7 permil PDB, indicating that methane is the predominant carbon source at both locations. Relative enrichment of 18O (d18O values as high as 5.2 permil PDB) are probably related to localized destabilization of gas hydrate. The total content of rare earth elements (REE) of 5% HNO3-treated solutions derived from carbonate samples varies from 1.6 ppm to 42.5 ppm. The shale-normalized REE patterns all display positive Ce anomalies (Ce/Ce* > 1.3), revealing that the carbonates precipitated under anoxic conditions. A sample from Hydrate Hole shows a concentric lamination, corresponding to fluctuations in d13C values as well as trace elements contents. These fluctuations are presumed to reflect changes of seepage flux.
Resumo:
Site 598 sediments were analyzed to determine the factors controlling the rare earth element (REE) geochemistry of the hydrothermal component. Site 598 provides an ideal sample suite for this purpose. Samples are lithologically "simple," primarily consisting of a hydrothermal component and biogenous carbonates. Also, the composition of the hydrothermal component appears unchanged through time or space, and the site appears to have undergone minimal diagenetic alteration. The shale-normalized REE patterns are similar to the pattern of seawater, varying only in absolute REE content. The REE content increases with distance from the paleorise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Results presented are consistent with the following model: the source mechanism for the REE content of hydrothermal sediments is scavenging by Fe oxyhydroxides from seawater. With prolonged exposure to seawater resulting from transport far from the injection point and/or long residence at the seawatersediment interface, the absolute REE content of hydrothermal sediments increases and becomes more like seawater.
Resumo:
Most of the Pb isotope data for the Leg 92 metalliferous sediments (carbonate-free fraction) form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts (MORB) toward the field for Mn nodules. These arrays are directed closely to the average values of Mn nodules, the composition of which reflects the Pb isotope composition of seawater (Reynolds and Dasch, 1971). Since the Leg 92 samples are almost devoid of continentally derived detritus, it can be inferred that the more radiogenic end-member is seawater. The less radiogenic end-member lies in the very middle of the MORB field, and hence can be considered to reflect the Pb isotope composition of typical ocean-ridge basalt. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb from the two different end-member sources. According to this model, eight samples from Sites 599 to 601 contain 50 to 100% basaltic Pb. Five of these samples have compositions that are identical within the uncertainty of the analyses. We use the average of these five values to define our unradiogenic end-member in the linear mixing model. The ratios used for this average are 206Pb/204Pb = 18.425 ± 0.010; 207Pb/204Pb = 15.495 ± 0.018; 208Pb/204Pb = 37.879 ± 0.068. These values should approximate the average Pb isotope composition of discharging hydrothermal solutions, and therefore also that of the basaltic crust, over the period of time represented by these samples ( 4 m.y., from 4 to 8 Ma). Sr isotope ratios show a significant range of values, from 0.7082 to 0.7091. The lower ratios are well outside the value of 0.70910 ± 6 for modern-day seawater (Burke et al., 1982). However, most values correspond very closely to the curve of 87Sr/86Sr versus age for seawater, with older samples having progressively lower 87Sr/86Sr ratios. The simplest explanation for this progressive reduction is that recrystallization of the abundant biogenic carbonate in the sediments released older seawater Sr which was incorporated into ferromanganiferous phases during diagenesis. Leg 92 metalliferous sediments have total rare earth element (REE) contents that range on a carbonate-free basis from 131 to 301 ppm, with a clustering between 167 and 222 ppm. The patterns have strong negative Ce anomalies. Samples from Sites 599 to 601 display a slight but distinct enrichment in the heavy REE relative to the light REE, whereas those from Sites 597 to 598 show almost no heavy REE enrichment. The former patterns (those for Sites 599 to 601) are interpreted as indicating moderate diagenetic alteration of metalliferous sediments originating at the EPR axis; the latter reflect more complete diagenetic modification.
Resumo:
Contents of rare earth elements (REE) in standard samples of Fe-Mn nodules (SDO-5, 6), Fe-Mn crust (SDO-7), and red clay (SDO-9) have been determined by ICP-MS and instrumental neutron activation analysis. Reproducibility of ICP-MS was 5-6%. These results are discussed and compared with other data. It has been found that distribution of REE in the standard samples of ocean Fe-Mn ores and red clay is highly homogenous.
Resumo:
Concentrations and compositions of rare earth elements (REE) in three micronodule fractions (50-250, 250-500, and >500 ?m), coexisting macronodules, and host sediments were studied. Samples were collected at three sites (Guatemala Basin, Peru Basin, and northern equatorial Pacific) located in elevated bioproductivity zones of surface waters. Influence of micronodule size is dominant for REE compositions and subordinate for REE concentrations. For example, Ce concentration inversely correlates with micronodule size and drops to the lowest value in macronodules and host sediments. Decrease of Ce concentration is generally accompanied by Mn/Fe increase in micro- and macronodules. Hence, the role of diagenetic source of material directly correlates with micronodule sizes. Contribution of the diagenetic source is maximal for macronodules. REE composition distinctions for micronodules and macronodules can be attributed to variations of hydrogenic iron oxyhydroxides and diagenetic (hydrothermal) iron hydroxophosphates that are the major REE carriers in ferromanganese ore deposits. Relationship and general trend in chemistry of coexisting macronodules suggest that they can represent products of the initial stage of nodule formation.