214 resultados para Pb-isotope


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report presents all the available major and trace elemental analyses and Sr, Nd, and Pb isotopic compositions of basaltic rocks recovered from Ocean Drilling Program Sites 800, 801, and 802 during Leg 129 (Table 1). Its main purpose is to provide other investigators a complete summary of geochemical data for Leg 129 basement basalts that they can use for later work. Detailed discussions of the data are presented elsewhere in the volume by Floyd and Castillo (Site 801 geochemistry and petrogenesis, dataset: doi:10.1594/PANGAEA.779154) Floyd et al. (Sites 800 and 802 geochemistry and petrography, dataset: doi:10.1594/PANGAEA.779129), Alt et al. (Site 801 alteration, dataset: doi:10.1594/PANGAEA.779207), and Castillo et al. (Sr, Nd, and Pb isotope geochemistry of Leg 129 basalts, dataset: doi:10.1594/PANGAEA.779191).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tholeiitic basalts and microdolerites that comprise the Cretaceous igneous complex in the Nauru Basin in the western equatorial Pacific have moderate ranges in initial 87Sr/86Sr (0.70347 - 0.70356), initial 143Nd/144Nd (0.51278 - 0.51287), and measured 206Pb/204Pb (18.52 - 19.15), 207Pb/204Pb (15.48 - 15.66) and 208Pb/204Pb (38.28 - 38.81). These isotopic ratios overlap with those of both oceanic island basalts (OIB) and South Atlantic and Indian mid-ocean ridge basalts (MORB). However, the petrography, mineralogy, and bulk rock chemistry of the igneous complex are more similar to MORB than to OIB. Also, the rare earth element contents of Nauru Basin igneous rocks are uniformly depleted in light elements (La/Sm(ch) < 1) indicative of a mantle source compositionally similar to that of MORB. These results suggest that the igneous complex is the top of the original ocean crust in the Nauru Basin, and that the notion that the crust must be 15 to 35 m.y. older based on simple extrapolation and identification of the M-sequence magnetic lineations (Larson et al., 1981, doi:10.2973/dsdp.proc.61.1981; Moberly et al., 1985, doi:10.2973/dsdp.proc.81.1984) may be invalid because of a more complicated tectonic setting. The igneous complex most probably was extruded from an ocean ridge system located near the anomalously hot, volcanically active, and isotopically distinct region in the south central Pacific which has been in existence since c. 120 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regional weathering intensity must have changed dramatically at high latitudes during the Quaternary as a consequence of repeated continental glaciation. Investigation of these glacial/interglacial changes at high temporal resolution is possible with the recent development of Pb isotopes in FeMn oxyhydroxide phases as a proxy for region-specific weathering intensity, where increases in the radiogenic component are thought to correspond to increased continental weathering fluxes. Here we present a Pb isotope record sourced from the FeMn oxyhydroxide fraction in marine sediments from IODP Sites U1302/3 on Orphan Knoll (~3500 mbsl, NW Atlantic), spanning the last 37 ka. Located at the eastern edge of the Laurentide Ice Sheet (LIS), Site U1302/3 is well-placed to monitor changes in weathering intensity associated with LIS glacial history. Overall, the data show a close correspondence to local surface water d18O, with least radiogenic values during times of heavy d18O (glacial maximum) and most radiogenic values during times of light d18O (Holocene). This supports the prediction that weathering intensity in glaciated regions of the North Atlantic correlates with the exposure age of glacial debris. Superimposed on these background trends are extreme radiogenic excursions (e.g. variation in 206Pb/204Pb from ~19.2-21.0) contemporaneous with Heinrich events and the Younger Dryas. These data are substantially more radiogenic than existing records from the NW Atlantic, and most likely represent episodes of exceptionally high inputs of pre-formed FeMn oxyhydroxides during drainage of the LIS. Due to its extreme isotope composition, at least in the NW Atlantic region, Pb would appear to be a good proxy for the fluxes of weathered continental material and perhaps, by inference, nutrients to the surface ocean

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New Sr-Nd-Pb-Hf data require the existence of at least four mantle components in the genesis of basalts from the the North Atlantic Igneous Province (NAIP): (1) one (or more likely a small range of) enriched component(s) within the Iceland plume, (2) a depleted component within the Iceland plume (distinct from the shallow N-MORB source), (3) a depleted sheath surrounding the plume and (4) shallow N-MORB source mantle. These components have been available since the major phase of igneous activity associated with plume head impact during Paleogene times. In Hf-Nd isotope space, samples from Iceland, DSDP Leg 49 (Sites 407, 408 and 409), ODP Legs 152 and 163 (southeast Greenland margin), the Reykjanes Ridge, Kolbeinsey Ridge and DSDP Leg 38 (Site 348) define fields that are oblique to the main ocean island basalt array and extend toward a component with higher 176Hf/177Hf than the N-MORB source available prior to arrival of the plume, as indicated by the compositions of Cretaceous basalts from Goban Spur (~95 Ma). Aside from Goban Spur, only basalts from Hatton Bank on the oceanward side of the Rockall Plateau (DSDP Leg 81) lie consistently within the field of N-MORB, which indicates that the compositional influence of the plume did not reach this far south and east ~55 Ma ago. Thus, Hf-Nd isotope systematics are consistent with previous studies which indicate that shallow MORB-source mantle does not represent the depleted component within the Iceland plume (Thirlwall, J. Geol. Soc. London 152 (1995) 991-996; Hards et al., J. Geol. Soc. London 152 (1995) 1003-1009; Fitton et al., 1997 doi:10.1016/S0012-821X(97)00170-2). They also indicate that the depleted component is a long-lived and intrinsic feature of the Iceland plume, generated during an ancient melting event in which a mineral (such as garnet) with a high Lu/Hf was a residual phase. Collectively, these data suggest a model for the Iceland plume in which a heterogeneous core, derived from the lower mantle, consists of 'enriched' streaks or blobs dispersed in a more depleted matrix. A distinguishing feature of both the enriched and depleted components is high Nb/Y for a given Zr/Y (i.e. positive DeltaNb), but the enriched component has higher Sr and Pb isotope ratios, combined with lower epsilon-Nd and epsilon-Hf. This heterogeneous core is surrounded by a sheath of depleted material, similar to the depleted component of the Iceland plume in its epsilon-Nd and epsilon-Hf, but with lower 87Sr/86Sr, 208Pb/204Pb and negative DeltaNb; this material was probably entrained from near the 670 km discontinuity when the plume stalled at the boundary between the upper and lower mantle. The plume sheath displaced more normal MORB asthenosphere (distinguished by its lower epsilon-Hf for a given epsilon-Nd or Zr/Nb ratio), which existed in the North Atlantic prior to plume impact. Preliminary data on MORBs from near the Azores plume suggest that much of the North Atlantic may be 'polluted' not only by enriched plume material but also by depleted material similar to the Iceland plume sheath. If this hypothesis is correct, it may provide a general explanation for some of the compositional diversity and variations in inferred depth of melting (Klein and Langmuir, 1987 doi:10.1029/JB092iB08p08089) along the MAR in the North Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of atmospheric dust on climate and biogeochemical cycles in the oceans is well understood but poorly quantified. Glacial atmospheric dust loads were generally greater than those during the Holocene, as shown, for example, by the covariation of dust fluxes in the Equatorial Pacific and Antarctic ice cores. Nevertheless, it remains unclear whether these increases in dust flux were associated with changes in sources of dust, which would in turn suggest variations in wind patterns, climate or paleo-environment. Such questions can be answered using radiogenic isotope tracers of dust provenance. Here, we present a 160-kyr high-precision lead isotope time-series of dust input to the Eastern Equatorial Pacific (EEP) from core ODP Leg 138, Site 849 (0°11.59' N, 110°31.18' W). The Pb isotope record, combined with Nd isotope data, rules out contributions from Northern Hemisphere dust sources, north of the Intertropical Convergence Zone, such as Asia or North Africa/Sahara; similarly, eolian sources in Australia, Central America, the Northern Andes and Patagonia appear insignificant based upon the radiogenic isotope data. Fluctuations in Pb isotope ratios throughout the last 160 kyr show, instead, that South America remained the prevailing source of dusts to the EEP. There are two distinct South American Pb isotope end-members, constrained to be located in the south Central Volcanic Zone (CVZ, 22° S - 27.5° S) and the South Volcanic Zone (SVZ, 33° S - 43° S), with the former most likely originating in the Atacama Desert. Dust availability in the SVZ appears to be related to the weathering of volcanic deposits and the development of ash-derived Andosols, and influenced by local factors that might include vegetation cover. Variations in the dust fluxes from the two sources are in phase with both the dust flux and temperature records from Antarctican ice cores. We show that the forcing of dust provenance over time in the EEP overall is influenced by high-southerly-latitude climate conditions, leading to changes in the latitudinal position and strength of the South Westerlies as well as the coastal winds that blow northward along the Chilean margin. The net result is a modulation of dust emission from the Atacama Desert and the SVZ via a northward migration of the South Westerlies during cold periods and southward retreat during glacial terminations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The northwest trending walls of the Pito Deep Rift (PDR), a tectonic window in the southeast Pacific, expose in situ oceanic crust generated ?3 Ma at the superfast spreading southern East Pacific Rise (SEPR). Whole rock analyses were performed on over 200 samples of dikes and lavas recovered from two ~8 km**2 study areas. Most of the PDR samples are incompatible-element-depleted normal mid-ocean ridge basalts (NMORB; (La/Sm)N < 1.0) that show typical tholeiitic fractionation trends. Correlated variations in Pb isotope ratios, rare earth element patterns, and ratios of incompatible elements (e.g., (Ce/Yb)N) are best explained by mixing curves between two enriched and one depleted mantle sources. Pb isotope compositions of most PDR NMORB are offset from SEPR data toward higher values of 207Pb/204Pb, suggesting that an enriched component of the mantle was present in this region in the past ?3 Ma but is not evident today. Overall, the PDR crust is highly variable in composition over long and short spatial scales, demonstrating that chemically distinct lavas and dikes can be emplaced within the same segment over short timescales. However, the limited spatial distribution of high 206Pb/204Pb samples and the occurrence of relatively homogeneous MgO compositions (ranging <2.5 wt %) within a few of the individual dive transects (over distances of ~1 km) suggests that the mantle source composition evolved and magmatic temperatures persisted over timescales of tens of thousands of years. The high degree of chemical variability between pairs of adjacent dikes is interpreted as evidence for along-axis transport of magma from chemically distinct portions of the melt lens. Our findings suggest that lateral dike propagation occurs to a significant degree at superfast spreading centers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New major, trace element, and isotope data (Pb, Sr, and Nd) reveal an impressive compositional variation in the basalts recovered from Site 834. Major element compositions span almost the entire range observed in basalts from the modern axial systems of the Lau Basin, and variations are consistent with low-pressure fractionation of a mid-ocean-ridge-basalt (MORB)-like parent, in which plagioclase crystallization has been somewhat suppressed. Trace element compositions deviate from MORB in all but one unit (Unit 7) and show enrichments in large-ion-lithophile elements (LILEs) relative to high-field-strength elements (HFSEs) more typically associated with island-arc magmas. The Pb-isotope ratios define linear trends that extend from the field of Pacific MORB to highly radiogenic values similar to those observed in rocks from the northernmost islands of the Tofua Arc. The Sr-isotope compositions also show significant variation, and these too project from radiogenic values back into the field for Pacific MORB. The variations in key trace element and isotopic features are consistent with magma mixing between two relatively mafic melts: one represented by Pacific MORB, and the other by a magma similar to those erupted on 'Eua when it was part of the original Tongan arc, or perhaps members of the Lau Volcanic Group (LVG). Based on our model, the most radiogenic compositions (Units 2 and 8) represent approximately 50:50 mixtures of these MORB and arc end-members. Magma mixing requires that both components are simultaneously available, and implies that melts have not shown a compositional progression from arc-like to MORB-like with extension at this locality. Rather, it is apparent that essentially pristine MORB can erupt as one of the earliest products of backarc initiation. Indeed, repetition of isotopic and trace element signatures with depth suggests that eruptions have been triggered by periodic injections of fresh MORB melts into the source regions of these magmas. The slow and almost amagmatic extension of the original arc complex envisaged to explain the observed chemistry is also consistent with the horst-and-graben topography of the western side of the Lau Basin. Given the similarities between basalts erupted at the modern Lau Basin spreading centers and MORB from the Indian Ocean, the overwhelming evidence for involvement of mantle similar to Pacific MORB in the petrogenesis of basalts from Site 834 is a new and important observation. It indicates that the original arc was underlain by asthenospheric material derived from the Pacific mantle convection cell, and that this has somehow been replaced by Indian Ocean MORB during the last ~5.5 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New trace element, Sr-, Nd-, Pb- and Hf isotope data provide insights into the evolution of the Tonga-Lau Basin subduction system. The involvement of two separate mantle domains, namely Pacific MORB mantle in the pre-rift and early stages of back-arc basin formation, and Indian MORB mantle in the later stages, is confirmed by these results. Contrary to models proposed in recent studies on the basis of Pb isotope and other compositional data, this change in mantle wedge character best explains the shift in the isotopic composition, particularly 143Nd/144Nd ratios, of modern Tofua Arc magmas relative to all other arc products from this region. Nevertheless, significant changes in the slab-derived flux during the evolution of the arc system are also required to explain second order variations in magma chemistry. In this region, the slab-derived flux is dominated by fluid; however, these fluids carry Pb with sediment-influenced isotopic signatures, indicating that their source is not restricted to the subducting altered mafic oceanic crust. This has been the case from the earliest magmatic activity in the arc (Eocene) until the present time, with the exception of two periods of magmatic activity recorded in samples from the Lau Islands. Both the Lau Volcanic Group, and Korobasaga Volcanic Group lavas preserve trace element and isotope evidence for a contribution from subducted sediment that was not transported as a fluid, but possibly in the form of a melt. This component shares similarities with that influencing the chemistry of the northern Tofua Arc magmas, suggesting some caution may be required in the adoption of constraints for the latter dependent upon the involvement of sediments from the Louisville Ridge. A key outcome of this study is to demonstrate that the models proposed to explain subduction zone magmatism cannot afford to ignore the small but important contributions made by the mantle wedge to the incompatible trace element inventory of arc magmas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Central American Volcanic Arc (CAVA) has been the subject of intensive research over the past few years, leading to a variety of distinct models for the origin of CAVA lavas with various source components. We present a new model for the NW Central American Volcanic Arc based on a comprehensive new geochemical data set (major and trace element and Sr-Nd-Pb-Hf-O isotope ratios) of mafic volcanic front (VF), behind the volcanic front (BVF) and back-arc (BA) lava and tephra samples from NW Nicaragua, Honduras, El Salvador and Guatemala. Additionally we present data on subducting Cocos Plate sediments (from DSDP Leg 67 Sites 495 and 499) and igneous oceanic crust (from DSDP Leg 67 Site 495), and Guatemalan (Chortis Block) granitic and metamorphic continental basement. We observe systematic variations in trace element and isotopic compositions both along and across the arc. The data require at least three different endmembers for the volcanism in NW Central America. (1) The NW Nicaragua VF lavas require an endmember with very high Ba/(La, Th) and U/Th, relatively radiogenic Sr, Nd and Hf but unradiogenic Pb and low d18O, reflecting a largely serpentinite-derived fluid/hydrous melt flux from the subducting slab into a depleted N-MORB type of mantle wedge. (2) The Guatemala VF and BVF mafic lavas require an enriched endmember with low Ba/(La, Th), U/Th, high d18O and radiogenic Sr and Pb but unradiogenic Nd and Hf isotope ratios. Correlations of Hf with both Nd and Pb isotopic compositions are not consistent with this endmember being subducted sediments. Granitic samples from the Chiquimula Plutonic Complex in Guatemala have the appropriate isotopic composition to serve as this endmember, but the large amounts of assimilation required to explain the isotope data are not consistent with the basaltic compositions of the volcanic rocks. In addition, mixing regressions on Nd vs. Hf and the Sr and O isotope plots do not go through the data. Therefore, we propose that this endmember could represent pyroxenites in the lithosphere (mantle and possibly lower crust), derived from parental magmas for the plutonic rocks. (3) The Honduras and Caribbean BA lavas define an isotopically depleted endmember (with unradiogenic Sr but radiogenic Nd, Hf and Pb isotope ratios), having OIB-like major and trace element compositions (e.g. low Ba/(La, Th) and U/Th, high La/Yb). This endmember is possibly derived from melting of young, recycled oceanic crust in the asthenosphere upwelling in the back-arc. Mixing between these three endmember types of magmas can explain the observed systematic geochemical variations along and across the NW Central American Arc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Widespread silicic pyroclastic eruptions of the Oligocene Afro-Arabian flood volcanic province (ignimbrites and airfall tuffs) produced up to 20% of the total flood volcanic stratigraphy (>6*10**4 km**3). Volumes of individual ignimbrites and tuffs exposed on land range from ~150 to >2000 km**3 and eight major units (15-100 m thick) were erupted in <2 Myr, placing these amongst the largest-magnitude silicic pyroclastic eruptions on Earth. They are compositionally distinctive time-stratigraphic markers which were deposited as co-ignimbrite ashfall deposits on a near-global scale around the time of the Oi2 cooling anomaly at ~30 Ma. Two ignimbrites from the lower part of the flood volcanic succession in Yemen have been correlated to: (a) the conjugate rifted margin of Ethiopia (>500 km distant); and (b) to two deep sea ash layers sampled by ODP Leg 115 in the Indian Ocean ~2700 km to the southeast. This correlation is based on whole rock analyses of silicic units for isotope ratios (Pb, Nd) and rare earth element compositions, in conjunction with novel in situ Pb isotope laser ablation multicollector inductively coupled plasma mass spectroscopy analysis of groundmass and glass shards. Compositional diversity preserved on the scale of individual ash shards in these deep sea tephra layers record chemical heterogeneity present in the silicic magma chambers that is not evident in the welded on-land deposits. Ages of the ash layers can be established by correlation to precisely dated on-land ignimbrites, and current evidence suggests that while these eruptions may have exacerbated already changing climatic conditions, they both marginally post-date the Oi2 global cooling anomaly.