340 resultados para PORE WATERS
Resumo:
We have developed sampling methods and an analytical system to determine the concentration of dissolved organic C (DOC) in marine pore waters. Our analytical approach is a modification of recently developed high-temperature, Pt-catalyzed oxidation methods; it uses Chromatographic trapping of the DOC-derived CO2 followed by reduction to CH4 and flame ionization detection. Sampling experiments with nearshore sediments indicate that pore-water separation by whole-core squeezing causes artificially elevated DOC concentrations, while pore-water recovery by sectioning and centrifugation does not appear to introduce DOC artifacts. Results from a set of northwestern Atlantic continental slope cores suggest that net DOC production accounts for >50% of the organic C that is recycled at the sediment-water interface.
Resumo:
Pore water was collected from each of 10 sites during Ocean Drilling Program (ODP) Leg 168 on the eastern flank of the Juan de Fuca Ridge. These ten sites delineate a transect perpendicular to the present ridge axis and span a crustal age of 0.86-3.59 Ma. At nine of the ten sites the entire sediment section, which ranged from 41.3 to 613.8 m thick, was cored and attempts were made to recover at least one whole round of sediment per section of core for extraction of pore water. Several (2-5) whole-round sediment samples were taken from the uppermost and lowermost cores to constrain the chemical gradient near the sediment/water and sediment/basalt interfaces, respectively. Pore water was extracted from whole-round sediment core sections by squeezing only the most pristine sediment in a titanium squeezer designed by Manheim and Sayles (1974). Two additional water samples were collected in situ using the water-sampler temperature probe (WSTP; Barnes, 1988, doi:10.2973/odp.proc.ir.110.104.1988). Both of these samples were collected in the cased section of the open borehole from ODP Hole 1026B. Formation fluids were flowing up the cased hole into the overlying deep seawater (Fisher et al., 1997, doi:10.1029/97GL01286). Detailed descriptions of the sampling methods that were used to collect fluids are given by the Shipboard Scientific Party (Davis, Fisher, Firth, et al., 1997, doi:10.2973/odp.proc.ir.168.1997).
Resumo:
We report dissolved sulfide sulfur concentrations and the sulfur isotopic composition of dissolved sulfate and sulfide in pore waters from sediments collected during Ocean Drilling Program Leg 204. Porewater sulfate is depleted rapidly as the depth to the sulfate/methane interface (SMI) occurs between 4.5 and 11 meters below seafloor at flank and basin locations. Dissolved sulfide concentration reaches values as high as 11.3 mM in Hole 1251E. Otherwise, peak sulfide concentrations lie between 3.2 and 6.1 mM and occur immediately above the SMI. The sulfur isotopic composition of interstitial sulfate generally becomes enriched in 34S with increasing sediment depth. Peak d34S-SO4 values occur just above the SMI and reach up to 53.1 per mil Vienna Canyon Diablo Troilite (VCDT) in Hole 1247B. d34S-Sigma HS values generally parallel the trend of d34S-SO4 values but are more depleted in 34S relative to sulfate, with values from -12.7 per mil to 19.3 per mil VCDT. Curvilinear sulfate profiles and carbon isotopic composition of total dissolved carbon dioxide at flank and basin sites strongly suggest that sulfate depletion is controlled by oxidation of sedimentary organic matter, despite the presence of methane gas hydrates in underlying sediments. Preliminary data from sulfur species are consistent with this interpretation for Leg 204 sediments at sites not located on or near the crest of Hydrate Ridge.
Resumo:
Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were for the first time investigated in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 µM were found. We suggest that the increased accumulation of fine-grained material with high amounts of reducible metal oxides in combination with the reduced availability of metabolisable organic matter and enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms favours metal oxide reduction over sulphate reduction in these areas. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9x10**3 to 790x10**3 t/yr. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5/mg/m**2/yr (median: 3.8 mg/m**2/yr) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the accumulation of melt water derived iron-rich material on the shelf.
Resumo:
Recent discoveries relating to the circulation of fluids within the oceanic crust include the finding of both important fluxes of elements and isotopes into the oceans by ridge-crest hydrothermal convection and important fluxes of heat out of the oceanic crust by convection at ridge crests and at some distance from ridge crests. In the present chapter, I present isotopic, chemical, and physical data from sediments and pore waters of Deep Sea Drilling Project (DSDP) Holes 503A and 503B. These results are modeled in terms of pore-water diffusion, advection, and production to ascertain the relative contribution of these processes at this location, 7.5 m.y. removed from ridge-crest hydrothermal activity. The observations made here contribute to the understanding of chemical and heat transport in oceanic crust of moderate age.
Resumo:
Mineralogic, petrographic, and geochemical analyses of sediments recovered from two Leg 166 Ocean Drilling Program cores on the western slope of Great Bahama Bank (308 m and 437 m water depth) are used to characterize early marine diagenesis of these shallow-water, periplatform carbonates. The most pronounced diagenetic products are well-lithified intervals found almost exclusively in glacial lowstand deposits and interpreted to have formed at or near the seafloor (i.e., hardgrounds). Hardground cements are composed of high-Mg calcite (~14 mol% MgCO3), and exhibit textures typically associated with seafloor cementation. Geochemically, hardgrounds are characterized by increased d18O and Mg contents and decreased d13C, Sr, and Na contents relative to their less lithified counterparts. Despite being deposited in shallow waters that are supersaturated with the common carbonate minerals, it is clear that these sediments are also undergoing shallow subsurface diagenesis. Calculation of saturation states shows that pore waters become undersaturated with aragonite within the upper 10 m at both sites. Dissolution, and likely recrystallization, of metastable carbonates is manifested by increases in interstitial water Sr and Sr/Ca profiles with depth. We infer that the reduction in mineral saturation states and subsequent dissolution are being driven by the oxidation of organic matter in this Fe-poor carbonate system. Precipitation of burial diagenetic phases is indicated by the down-core appearance of dolomite and corresponding decrease in interstitial water Mg, and the presence of low-Mg calcite cements observed in scanning electron microscope photomicrographs.
Resumo:
Geological and geophysical data collected during Deep Sea Drilling Project (DSDP) Leg 70 indicate that hydrothermal solutions are upwelling through the sediments of the mounds hydrothermal field (Sites 506, 507, and 509) and downwelling in the low heat-flow zone to the south (Site 508). Pore-water data are compatible with these conclusions. Pore waters at mounds sites are enriched in Ca and depleted in Mg relative to both seawater and Site 508 pore waters. These anomalies are believed to reflect prior reaction of the interstitial waters with basement rocks. The mounds solutions are also enriched in iron, which is probably hydrothermal and en route to forming nontronite. Concentrations of Si and NH3 in mounds pore water increase upcore as a result of the addition of dissolving biogenic debris to ascending hydrothermal solutions. Some low heat-flow pore-water samples (Site 508) are enriched in Ca and depleted in Mg. These anomalies likely reflect the presence of pockets of hydrothermal solutions in areas otherwise dominated by downwelling bottom water.
Resumo:
Sediments of the Barbados Ridge complex, cored on DSDP Leg 78A, contain low concentrations of acid-insoluble carbon (0.05-0.25%) and nitrogen (C/N 1.5-5) and dispersed C1-C6 hydrocarbons (100-800 ppb). The concentrations of organic carbon and 13C in organic carbon decrease with depth, whereas the concentration of dispersed hydrocarbons increases slightly with depth. These trends may reflect the slow oxidation of organic matter, with selective removal of 13C and slow conversion of the residual organic matter to hydrocarbons. Very minor indications of nitrogen gas were observed at about 250 meters sub-bottom at two of the drilling sites. Basement basalts have calcite veins with d13C values in the range of 2.0 to 3.2 per mil and d18O-SMOW values ranging from 28.5 to +30.6 per mil. Interstitial waters have d18O-SMOW of 0.2 to -3.5 per mil and dD-SMOW of -2 to -15 per mil. The oxygen isotopic composition of the calcite veins in the basement basalts gives estimated equilibrium fractionation temperatures in the range of 11 to 24°C, assuming precipitation from water with d18O-SMOW in the range of +0.1 to -1.0 per mil. This suggests that basalt alteration and precipitation of vein calcite occurred in contact either with warmer Campanian seawater or, later, with pore water, after burial to depths of 200- 300 meters. Pore waters from all three sites are depleted in deuterium and 18O, and dissolved sulfate is enriched in 34S at Sites 541 and 542, but not at Site 543.