123 resultados para Oxygen at low temperatures


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Japan Sea experienced bottom water anoxia at the last glacial maximum (LGM) since it is surrounded by four shallow straits, the sill depths of which are close to, or shallower than, the drop in sea level (~120 m) that occurred then. A distinctive negative d18O excursion of planktonic foraminifera also took place during the LGM. This excursion has been interpreted from foraminiferal data as recording a drop in the paleosalinity of surface waters on the assumption of a constant low sea surface temperatures between 34 and 11 ka. We present here a profile of alkenone-based sea surface temperatures (alkenone-SSTs) over the past 36 kyr. Our results suggest that SSTs during the LGM were much higher than those previously assumed. After considering the factors that might affect estimation of alkenone-SSTs and comparisons of core-top alkenone-SSTs values with values for modern seawater we conclude that the higher alkenone-SSTs during the LGM are reliable and reasonable. These warm SSTs were probably caused by radiative equilibrium associated with the development of stable water stratification in the Japan Sea during the LGM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ocean acidification (OA) is anticipated to interact with the more frequently occurring hypoxic conditions in shallow coastal environments. These could exert extreme stress on the barnacle-dominated fouling communities. However, the interactive effect of these two emerging stressors on early-life stages of fouling organisms remains poorly studied. We investigated both the independent and interactive effect of low pH (7.6 vs. ambient 8.2) and low oxygen (LO; 3 mg/l vs. ambient 5 mg/l) from larval development through settlement (attachment and metamorphosis) and juvenile growth of the widespread fouling barnacle, Balanus amphitrite. In particular, we focused on the critical transition between planktonic and benthic phases to examine potential limiting factors (i.e. larval energy storage and the ability to perceive cues) that may restrain barnacle recruitment under the interactive stressors. LO significantly slowed naupliar development, while the interaction with low pH (LO-LP) seemed to alleviate the negative effect. However, 20-50% of the larvae became cyprid within 4 d post-hatching, regardless of treatment. Under the two stressors interaction (LO-LP), the barnacle larvae increased their feeding rate, which may explain why their energy reserves at competency were not different from any other treatment. In the absence of a settlement-inducing cue, a significantly lower percentage of cyprids (15% lower) settled in LO and LO-LP. The presence of an inducing cue, however, elevated attachment up to 50-70% equally across all treatments. Post-metamorphic growth was not altered, although the condition index was different between LO and LO-LP treatments, potentially indicating that less and/or weaker calcified structures were developed when the two stressors were experienced simultaneously. LO was the major driver for the responses observed and its interaction with low pH should be considered in future studies to avoid underestimating the sensitivity of biofouling species to OA and associated climate change stressors.