99 resultados para Neuroartropatia de Charcot


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean delta13C values were 0.46 per mil lower during the last glacial maximum than during the Late Holocene. The geographic distribution of delta13C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high delta13C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean delta13C values during the glaciation are lower than both North Atlantic and Pacific delta13C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched 13C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have stressed the role of high latitude nutrient levels and productivity in controlling the carbon isotopic composition of the deep sea and the CO2 content of the atmosphere. We undertook a study of the chemical composition of the polar planktonic foraminifer Neogloboquadrina pachyderma (s., sinistral coiling) from 30 late Holocene samples and 49 down core records from the high-latitude North and South Atlantic Oceans to evaluate the history of sea surface chemical change from glacial to interglacial time. Stable isotopic analysis of coretop samples from the Atlantic, Pacific and Southern Oceans shows no significant correlation between the delta13C of N. pachyderma and either delta13C or PO4 in seawater. Conversely, Cd/Ca ratios in planktonic foraminifera are consistent with the PO4 content of surface waters. The level of maximum glaciation (18,000 yr B.P.), identified by CLIMAP and delta18O, was chosen for mapping. Isopleths of delta18O on N. pachyderma (s.) in the North Atlantic reveal a pattern largely influenced by sea surface temperature (S.S.T.) and generally support the S.S.T. reconstruction of CLIMAP. Differences between the two suggest significantly lower salinity in North Atlantic surface waters at high latitudes than in lower latitudes. Down core delta13C records of N. pachyderma confirm that low delta13C values occurred in the northeast Atlantic during the latest glacial maximum (Labeyrie and Duplessy, 1985, doi:10.1016/0031-0182(85)90069-0). However, a map of delta13C for the 18,000 yr B.P. level for a much larger region in the North Atlantic shows that minimum N. pachyderma delta13C occurred in temperate waters. N. pachyderma delta13C decreased toward the southwest, reaching a minimum of -1 per mil at 37°N. Despite the variability seen in delta13C records of N. pachyderma, none of our cores show significant temporal variability in Cd/Ca. From the combined Cd/Ca and delta13C data we can see no evidence for an upwelling gyre in the eastern North Atlantic during the latest glacial maximum, nor evidence that the southern and northern oceans had significantly different levels of preformed nutrients than today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we present a global distribution pattern and budget of the minimum flux of particulate organic carbon to the sea floor (J POC alpha). The estimations are based on regionally specific correlations between the diffusive oxygen flux across the sediment-water interface, the total organic carbon content in surface sediments, and the oxygen concentration in bottom waters. For this, we modified the principal equation of Cai and Reimers [1995] as a basic monod reaction rate, applied within 11 regions where in situ measurements of diffusive oxygen uptake exist. By application of the resulting transfer functions to other regions with similar sedimentary conditions and areal interpolation, we calculated a minimum global budget of particulate organic carbon that actually reaches the sea floor of ~0.5 GtC yr**-1 (>1000 m water depth (wd)), whereas approximately 0.002-0.12 GtC yr**-1 is buried in the sediments (0.01-0.4% of surface primary production). Despite the fact that our global budget is in good agreement with previous studies, we found conspicuous differences among the distribution patterns of primary production, calculations based on particle trap collections of the POC flux, and J POC alpha of this study. These deviations, especially located at the southeastern and southwestern Atlantic Ocean, the Greenland and Norwegian Sea and the entire equatorial Pacific Ocean, strongly indicate a considerable influence of lateral particle transport on the vertical link between surface waters and underlying sediments. This observation is supported by sediment trap data. Furthermore, local differences in the availability and quality of the organic matter as well as different transport mechanisms through the water column are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.