286 resultados para NH4


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interstitial water chemistry has proved to be a sensitive indicator for early diagenetic reactions, particularly those related to organic matter oxidation. Downhole chemical variations in the pore waters from Deep Sea Drilling Project Holes 496 and 497 on the Middle America Trench slope off Guatemala are anomalous because both salinity and chlorinity show strong decreases to half the values of seawater, and d18O values become positive (maximum of about +2.5% at the bottom of the holes). These observations are explained in terms of dilution of pore waters after retrieval as a result of decomposition of the gas hydrates before removal of pore waters by shipboard squeezing techniques. In all holes, except Hole 495 (drilled in pelagic sediments), decomposition of organic matter leads to rapid sulfate depletion and subsequent methane generation. Associated with methane generation are large increases in alkalinity and dissolved ammonia. The latter component causes ion exchange reactions with clay minerals, which results in maxima in magnesium and perhaps potassium. At greater depths, as yet unidentified reactions cause the removal of magnesium. Especially in the deeper Trench Sites 499 and 500, rapid variations in calcium, magnesium, and alkalinity occur in turbidite sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty-three core sections from Sites 434, 435, 438, 439, and 440 on the landward side and six core sections from Site 436 on the seaward side of the Japan Trench were obtained through the JOIDES Organic Geochemistry Advisory Panel for study of the origin and state of genesis of the organic matter associated with these continental slope, accretionary wedge, and outer trench slope sediments of the Japan Trench. The lipid fraction of these sediments is derived primarily from terrigenous organic matter and thus is allochthonous to the area. The associated kerogen fraction is of mixed allochthonous and autochthonous origin. The total organic carbon content seaward of the trench is less than that on the landward side. The composition of this organic matter is similar but not identical to that found in the landward side sediments. The organic matter within these sediments is in a diagenetic state in which geopolymerization of biogenic organic matter is nearly complete, but microbial alteration is still occurring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large organic food falls to the deep sea - such as whale carcasses and wood logs - support the development of reduced, sulfidic niches in an otherwise oxygenated, oligotrophic deep-sea environment. These transient hot spot ecosystems may serve the dispersal of highly adapted chemosynthetic organisms such as thiotrophic bivalves and siboglinid worms. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches. Wood colonization experiments were carried out for the duration of one year in the vicinity of a cold seep area in the Nile deep-sea fan (Eastern Mediterranean) at depths of 1690 m. Wood logs were deployed in 2006 during the BIONIL cruise (RV Meteor M70/2 with ROV Quest, Marum, Germany) and sampled in 2007 during the Medeco-2 cruise (RV Pourquoi Pas? with ROV Victor 6000, Ifremer, France). Wood-boring bivalves played a key role in the initial degradation of the wood, the dispersal of wood chips and fecal matter around the wood log, and the provision of colonization surfaces to other organisms. Total oxygen uptake measured with a ROV-operated benthic chamber module was higher at the wood (0.5 m away) in contrast to 10 m away at a reference site (25 mmol m-2 d-1 and 1 mmol m-2 d-1, respectively), indicating an increased activity of sedimentary communities around the wood falls. Bacterial cell numbers associated with wood increased substantially from freshly submerged wood to the wood chip/fecal matter layer next to the wood experiments, as determined with Acridine Orange Direct Counts (AODC) and DAPI-stained counts. Microsensor measurements of sulfide, oxygen and pH were conducted ex situ. Sulfide fluxes were higher at the wood experiments when compared to reference measurements (19 and 32 mmol m-2 d-1 vs. 0 and 16 mmol -2 d-1, respectively). Sulfate reduction (SR) rates at the wood experiments were determined in ex situ incubations (1.3 and 2.0 mmol m-2 d-1) and fell into the lower range of SR rates previously observed from other chemosynthetic habitats at cold seeps. There was no influence of wood deposition on phosphate, silicate and nitrate concentrations, but ammonium concentrations were elevated at the wood chip-sediment boundary layer. Concentrations of dissolved organic carbon were much higher at the wood experiments (wood chip-sediment boundary layer) in comparison to measurements at the reference sites, which may indicate that cellulose degradation was highest under anoxic conditions and hence enabled by anaerobic benthic bacteria, e.g. fermenters and sulfate reducers. Our observations demonstrate that, after one year, the presence of wood at the seafloor had led to the creation of sulfidic niches, comparable to what has been observed at whale falls, albeit at lower rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice cores from outside the Greenland and Antarctic ice sheets are difficult to date because of seasonal melting and multiple sources (terrestrial, marine, biogenic and anthropogenic) of sulfates deposited onto the ice. Here we present a method of volcanic sulfate extraction that relies on fitting sulfate profiles to other ion species measured along the cores in moving windows in log space. We verify the method with a well dated section of the Belukha ice core from central Eurasia. There are excellent matches to volcanoes in the preindustrial, and clear extraction of volcanic peaks in the post-1940 period when a simple method based on calcium as a proxy for terrestrial sulfate fails due to anthropogenic sulfate deposition. We then attempt to use the same statistical scheme to locate volcanic sulfate horizons within three ice cores from Svalbard and a core from Mount Everest. Volcanic sulfate is <5% of the sulfate budget in every core, and differences in eruption signals extracted reflect the large differences in environment between western, northern and central regions of Svalbard. The Lomonosovfonna and Vestfonna cores span about the last 1000 years, with good extraction of volcanic signals, while Holtedahlfonna which extends to about AD1700 appears to lack a clear record. The Mount Everest core allows clean volcanic signal extraction and the core extends back to about AD700, slightly older than a previous flow model has suggested. The method may thus be used to extract historical volcanic records from a more diverse geographical range than hitherto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present differential bathymetry and sediment core data from the Japan Trench, sampled after the 2011 Tohoku-Oki (offshore Japan) earthquake to document that prominent bathymetric and structural changes along the trench axis relate to a large (~27.7 km**2) slump in the trench. Transient geochemical signals in the slump deposit and analysis of diffusive re-equilibration of disturbed SO4**2- profiles over time constrain the triggering of the slump to the 2011 earthquake. We propose a causal link between earthquake slip to the trench and rotational slumping above a subducting horst structure. We conclude that the earthquake-triggered slump is a leading agent for accretion of trench sediments into the forearc and hypothesize that forward growth of the prism and seaward advance of the deformation front by more than 2 km can occur, episodically, during a single-event, large mega-thrust earthquake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combination of multiple sediment sources and varying rates of sediment accumulation in the Celebes and Sulu seas have had significant impact on the processes of diagenesis, mineralization, and pore-fluid flow. Isotopic and mass-balance calculations help elucidate the various reactions taking place in these western Pacific basins, where ash alteration and basalt-seawater interactions are superimposed on the effects of sulfate oxidation of organic carbon and biogenic methane and of dolomitization of biogenic carbonates. Based on the shape of the calcium and magnesium depth profiles, two major reactive zones have been identified. The first is located near the zone of sulfate depletion and is characterized by carbonate recrystallization, dolomitization and ash alteration reactions at both Ocean Drilling Program Sites 767 and 768. The second reactive zone corresponds to the bottom of the sedimentary sequence and is characterized by alteration reactions in the basement (Site 767) and in the pyroclastic deposits beneath the sediment column (Site 768).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic oxygen and nitrogen fluxes were quantified within the years 2012 to 2014 at different time series sites in the southern North Sea with the benthic lander NuSObs (Nutrient and Suspension Observatory). In situ incubations of sediments, in situ bromide tracer studies, sampling of macrofauna and pore water investigations revealed considerable seasonal and spatial variations of oxygen and nitrogen fluxes. Seasonal and spatial variations of oxygen fluxes were observed between two different time series sites, covering different sediment types and/or different benthic macrofaunal communities. On a sediment type with a high content of fine grained particles (<63 µm) oxygen fluxes of -15.5 to -25.1 mmol/m**2/d (June 2012), -2.0 to -8.2 mmol/m**2/d (March 2013), -16.8 to -21.5 mmol/m**2/d (November 2013) and -6.1 mmol/m**2/d (March 2014) were measured. At the same site a highly diverse community of small species of benthic macrofauna was observed. On a sediment type with a low content of fine grained particles (<63 µm) high oxygen fluxes (-33.2 mmol/m**2/d August 2012; -47.2 to -55.1 mmol/m**2/d November 2013; -16.6 mmol/m**2/d March 2014) were observed. On this sediment type a less diverse benthic macrofaunal community, which was dominated by the large bodied suspension feeder Ensis directus, was observed. Average annual rain rates of organic carbon and organic nitrogen to the seafloor of 7.44 mol C/m**2/y and 1.34 mol N/m**2/y were estimated. On average 79% of the organic bound carbon and 95% of the organic bound nitrogen reaching the seafloor are recycled at the sediment-water interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the base of data of Cruise 40 of R/V Akademik Keldysh features of formation of saline composition of interstitial waters from sediments containing free hydrocarbons (methane) and gas hydrates (CH4 x 6H2O) were considered. Chemical composition of the interstitial waters is presented for three zones of sediments from the Haakon Mosby submarine mud volcano: (1) zone of kettles containing free hydrocarbons, (2) gas hydrate sediments, and (3) periphery of the volcano. Abnormally high concentrations of bromine and especially iodine characteristic of the interstitial and particularly of the oil-field waters were found. Because of a great interest in natural gas hydrates found in marine sediments, we obtained a possibility to supplement scarce of available published data with some new information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of the Sr2+ concentrations of interstitial fluids obtained from sediments squeezed during Leg 115 were used to estimate the rates and total amount of recrystallization of biogenic carbonates. The total amount of recrystallization calculated using this method varies from less than 1 % in sediments at Site 706 to more than 40% at Site 709 in sediments of 47 Ma. Five of the sites drilled during Leg 115 (Sites 707 through 711) were drilled in a depth transect within a restricted geographic area so that theoretically they received similar amounts of sediment input. Of these, the maximum rate of recrystallization occurred in the upper 50 m of Site 710 (3812 m). The amount of recrystallization decreased with increasing water depth at Sites 708 (4096 m) and 711 (4428 m), presumably as a result of the fact that most of the reactive calcium carbonate was dissolved before burial. We also observed significant alkalinity deficits at many of these sites, a condition which most likely resulted from the precipitation of calcium carbonate either in the sedimentary column, or during retrieval of the core. Precipitation of CaCO3 as a result of pressure changes during core retrieval was confirmed by the comparison of Ca2+ and alkalinity from water samples obtained using the in-situ sampler and squeezed from the sediments. At Sites 707 and 716, the shallowest sites, no calcium or alkalinity deficits were present. In spite of our estimations of as much as 45% recrystallization at Site 709, all the carbonate sites exhibited what would be previously considered conservative Ca2+/Mg2+ profiles, which varied from -1 to -0.5. By virtue of the position of these sites relative to known basaltic basement or through the actual penetration of basalt (i.e., Sites 706, 707 and 712), these sites are all known to be underlain by basalt. Our results suggest, therefore, that more positive Ca2 + /Mg2+ gradients cannot necessarily be used as indicators of the nature of basement material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.