120 resultados para Mary, Queen of Scots, 1542-1587


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drought is a key factor affecting forest ecosystem processes at different spatio-temporal scales. For accurately modeling tree functioning ? and thus for producing reliable simulations of forest dynamics ? the consideration of the variability in the timing and extent of drought effects on tree growth is essential, particularly in strongly seasonal climates such as in the Mediterranean area. Yet, most dynamic vegetation models (DVMs) do not include this intra-annual variability of drought effects on tree growth. We present a novel approach for linking tree-ring data to drought simulations in DVMs. A modified forward model of tree-ring width (VS-Lite) was used to estimate seasonal- and site-specific growth responses to drought of Scots pine (Pinus sylvestris L.), which were subsequently implemented in the DVM ForClim. Ring-width data from sixteen sites along a moisture gradient from Central Spain to the Swiss Alps, including the dry inner Alpine valleys, were used to calibrate the forward ring-width model, and inventory data from managed Scots pine stands were used to evaluate ForClim performance. The modified VS-Lite accurately estimated the year-to-year variability in ring-width indices and produced realistic intra-annual growth responses to soil drought, showing a stronger relationship between growth and drought in spring than in the other seasons and thus capturing the strategy of Scots pine to cope with drought. The ForClim version including seasonal variability in growth responses to drought showed improved predictions of stand basal area and stem number, indicating the need to consider intra-annual differences in climate-growth relationships in DVMs when simulating forest dynamics. Forward modeling of ring-width growth may be a powerful tool to calibrate growth functions in DVMs that aim to simulate forest properties in across multiple environments at large spatial scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Early Cretaceous volcanic rocks of the Mariisky sequence and Early Cenozoic extrusive-vent rocks of the Mary Cape are exposed at the most northwest of the Schmidt Peninsula, North Sakhalin. In chemical composition, all the rocks are subdivided into four groups. Three groups include volcanic rocks of the Mariisky sequence, which consists, from bottom to top, of calc-alkaline rocks, transitional calc-alkaline-tholeiite rocks, and incompatible element-depleted tholeiites. These rocks show subduction geochemical signatures and are considered as a fragment of the Moneron-Samarga island arc system. Trace-element modeling indicates their derivation through successive melting of a garnet-bearing mantle and garnet-free shallower mantle sources containing amphibole; pyroxene; and, possibly, spinel. The mixed subduction and intra-plate characteristics of the extrusive vent rocks of the Mary Cape attest to their formation in a transform continental margin setting.