105 resultados para Manganese zinc ferrite


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large manganese nodule (manganese slab) was dredged from 2100 m on the Scott Plateau by R.V. Valdivia in 1977. It is an irregular ellipsoid, with a maximum dimension of 28 cm, parallel to the sea floor. Chemical analyses show that Mn and Fe proportions are comparable, and total Ni + Cu + Co content averages 0.7%. The nodule has a complex growth history which started with radial upward growth leading to coalescing into a continuous crust. The crust was coated with horizontal layers. After fracturing and infilling of cracks with calcareous sediment, further layers encased the nodule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron-manganese nodules from the ocean floor have been extensively studied. But, because of the fine grain size of the particles of the nodules, structural identification by X-ray and electron diffraction techniques is difficult and the mineralogy of the iron oxide phase has not been well characterized. The observation of the Mössbauer spectrum-in which each nucleus absorbs gamma-rays independently-is not limited by particle size in the same way as is the observation of Bragg peaks in diffraction measurements, in which radiation must be scattered coherently from a large number of atoms. The magnetic hyperfine splitting in the Mössbauer spectrum of magnetic materials is affected, however, when the particles are so small that they become superparamagnetic. We describe here an investigation using the 57Fe Mössbauer effect of two iron-manganese nodules in which the iron oxide phase could not be detected by X-ray or electron diffraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese nodules have been observed over wide areas of both the Pacific and Atlantic Oceans, however, deposits in the Pacific Ocean are generally much richer in elements of economic interest such as nickel, copper and cobalt. In understanding the genesis and the geochemistry involved in their formation and growth, it is important to know the total chemical composition of these nodules and how they vary within a given deposit and between deposits in the oceans of the world. The concentrations of elements: nickel, copper, cobalt, iron, manganese, silicon, and calcium, in all of the manganese nodules which have been analyzed were recently summarized by Horn et al. (1972). These observations indicate certain correlations, both positive and negative, between Mn and the associated elements within the nodules. Their data suggest similarities in chemical composition for nodules from a given area; however, the analyses of Mn nodules, like that of the ocean water, itself, has large errors associated with some of the measurements. This is understandable, since many of these measurements were intended to provide an approximate indication of elemental content. Where one is interested in carefully preparing a description of Mn nodule chemical composition which can serve as a basis for formulating theories regarding their genesis and subsequent geochemical changes in the ocean environment, then very precise and accurate analyses are essential. The purpose of this study has been to measure the concentrations of 18 elements in Mn nodules with a high degree of accuracy and determine what correlations exist between element concentrations. The scope of this study was seriously limited and therefore was confined to one area of the Pacific Ocean at approximately 22 N latitude, 114 W longitude, at an ocean depth of approximately 11,000 feet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable regional variations in the chemical composition of manganese nodules from a wide range of the Pacific Ocean have been observed. These variations can be more exactly expressed in terms of inter-element relationships. In particular, Cu-Mn and Cu-Ni associations reveal that Cu content in pelagic nodules increases rapidly in proportion to those of Mn or Ni. In nodules from continental borderland and hemipelagic areas, even if Mn or Ni contents increase, that of Cu increases only slightly. It is suggested that the considerable chemical differences within individual nodules and between nodules from the same site, at a limited pelagic area where there is no marked change in depositional conditions of nodules, are due to the role of hydrolyzable trace elements in the formation of nodules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineralogical and chemical analyses performed on 67 ferromanganese nodules from widely varying locations and depths within the marine environment of the Pacific Ocean indicate that the minor element composition is controlled by the mineralogy and that the formation of the mineral phases is depth dependent. The pressure effect upon the thermodynamics or kinetics of mineral formation is suggested as the governing agent in the depth dependence of the mineralogy. The minor elements, Pb and Co, appear concentrated in the dMnO2 phase, whereas Cu and Ni are more or less excluded from this phase. In the manganites, Pb and Co are relatively low in concentration, whereas Cu and Ni are spread over a wide range of values. The oxidation of Pb and Co from divalent forms in sea water to higher states can explain their concentration in the dMnO2 phase.