354 resultados para Magnetization
Resumo:
Paleomagnetic analysis of sediment samples from Ocean Drilling Program (ODP) Leg 133, Site 820, 10 km from the outer edge of the Great Barrier Reef, is undertaken to investigate the mineral magnetic response to environmental (sea level) changes. Viscous remanent magnetization (VRM) of both multidomain and near-superparamagnetic origin is prevalent and largely obscures the primary remanence, except in isolated high-magnetization zones. The Brunhes/Matuyama boundary cannot be identified, but is expected to be below 120 mbsf. The only evidence that exists for a geomagnetic excursion occurs at about 33 mbsf (-135 k.y.). Only one-half the cores were oriented, and many suffered from internal rotation about the core axis, caused by coring and/or slicing. The decay of magnetic remanence below the surface layer (0-2 mbsf) is attributed to sulfate reduction processes. The magnetic susceptibility (K) record is central for describing and understanding the magnetic properties of the sediments, and their relationship to glacio-eustatic fluctuations in sea level. Three prominent magnetic susceptibility peaks, at about 7, 32, and 64 mbsf, are superimposed on a background of smaller susceptibility oscillations. Fluctuations in susceptibility and remanence in the ôbackgroundö zone are controlled predominantly by variations in the concentration, rather than the composition of ferrimagnetics, with carbonate dilution playing an important role (type-A properties). The sharp susceptibility maxima occur at the start of the marine transgressions following low stands in sea level (high d18O, glacial maxima), and are characterized by a stable single-domain remanence, with a significant contribution from ultra-fine, superparamagnetic grains (type-C properties). During the later marine transgression, the susceptibility gradually returns to low values and the remanence is carried by stable single-domain magnetite (type-B properties). The A, B, and C types of sediment have distinctive ARM/K ratios. Throughout most of the sequence a strong inverse correlation exists between magnetic susceptibility and both CaCO3 and d18O variations. However, in the sharp susceptibility peaks (early transgression), more complex phase relationships are apparent among these parameters. In particular, the K-d18O correlation switches to positive, then reverts to negative during the course of the late transgression, indicating that two distinct mechanisms are responsible for the K-d18O correlation. Lower in the sequence, where sea-level-controlled cycles of upward-coarsening sediments, we find that the initial, mud phase of each cycle has been enriched in high-coercivity magnetic material, which is indicative of more oxic conditions. The main magnetic characteristics of the sediments are thought to reflect sea-level-controlled variations in the sediment source regions and related run-off conditions. Some preliminary evidence is seen that biogenic magnetite may play a significant role in the magnetization of these sediments.
Resumo:
Hole 823A covers the upper 120 m (Subunits IA and IB) of Site 823 at the bottom of the Queensland Trough. This hole contains an abundance of gravity-flow deposits, but is thought to have a monotonic age sequence. Above 32 mbsf, a strong, stable (normal) magnetic remanence having a relatively small viscous remanent magnetization (VRM) is seen. Below 32 mbsf, the sediments are subject to widespread VRM, which appears to obliterate the primary magnetization and precludes identification of the Brunhes/Matuyama boundary. Progressive alternating field (AF) demagnetization is limited to low fields (typically <400 Oe) by the weak magnetization in these sediments. As a consequence, the possibility of a high-coercivity component of primary magnetization cannot be ruled out. Lowrie-Fuller tests indicate that this VRM overprinting does not have a multidomain origin. An approximately linear relationship exists between median destructive field (MDF) and the logarithm of the natural remanent magnetization (NRM). Carbonate dilution does not appear to be a dominant factor in controlling variations in concentration-dependent magnetic parameters, such as magnetic susceptibility. The sedimentological distinction between Subunits IA and IB does not show up in the magnetic record. However, a sharp change in magnetic properties does occur at 32 mbsf, with low background magnetizations below this level and high background magnetizations above it. The boundary coincides with a change from thick (>10 cm thick) to thin (<10 cm thick) turbidite deposition, and is also near the boundary separating the sulfate-reduction zone in the upper part of the sequence from the sulfate-free zone beneath. The abrupt nature of the magnetic boundary is evidence that nannofossil subzone CN14b is not condensed, but is missing in a hiatus at 32 mbsf. Nine peaks have been identified in the susceptibility (K) record that are superimposed on ôbackgroundö signals. ARM/K ratios are uniformly low for the background sediments below 32 mbsf, intermediate for strong susceptibility peaks, and high for background sediments above 32 mbsf and weak susceptibility peaks. Comparisons with results from Site 820 suggest that (1) the background sediments above 32 mbsf and the weak susceptibility peaks carry a stable single-domain magnetization, and (2) the high susceptibility peaks are caused by the addition of a superparamagnetic contribution. Expectations are that the distinctive features of the Hole 823A magnetic record are linked to major environmental changes.
Resumo:
An Oligocene magnetostratigraphy from ODP Sites 1218 and 1219 (Equatorial Pacific) has been obtained by measurements made on u-channel samples, augmented by about 221 discrete samples. U-channel samples were measured at 1 cm intervals and were stepwise demagnetized in alternating fields (AF) up to a maximum peak field of 80 mT. The magnetization directions were determined at 1 cm intervals by principal component analysis of demagnetization steps in the 20 to 60 mT peak field range. A similar treatment was carried out on the discrete samples, which confirmed the results obtained with u-channel measurements. Sites 1218 and 1219 were precisely correlated based on multisensor track, paleontological and shipboard magnetostratigraphic data; this correlation is substantiated by u-channel measurements. Although the magnetostratigraphy obtained from the u-channels is similar to the interpretation deduced from shipboard measurements based on blanket demagnetization at peak AF of 20 mT, the u-channel results are substantially more robust since many interpretative uncertainties are resolved by the stepwise demagnetization and higher stratigraphic resolution. The temporal resolution of u-channel-based magnetic stratigraphy in the Oligocene section of Sites 1218 and 1219 is better than 5 kyr, and it is therefore suitable for detection of brief polarity subchrons. However, in spite of the high resolution, we did not find any reversals corresponding to the numerous cryptochrons identified in this time span by Cande and Kent (1995, doi:10.1029/94JB03098).
Resumo:
We present sediment magnetic and chemical analysis of cyclic ocean sediments of the upwelling region of the Lower Congo Basin (equatorial Atlantic). We investigated two >100-k.y. intervals from Ocean Drilling Program Site 1075 to analyze the hysteresis properties, sources of magnetic susceptibility, anhysteretic remanent magnetizations, thermomagnetic behavior, and element concentrations of Fe, Ca, Ti, Mn, and K using an X-ray fluorescence (XRF) core scanner. The upper interval was sampled between 14 and 32 meters composite depth (mcd; 0.09-0.21 Ma) and the lower between 141 and 163 mcd (1.31-1.54 Ma) at a resolution of 20 cm, which represents a temporal resolution of 2.0 and 1.3 k.y., respectively. XRF core-scanner data were acquired at 5-cm intervals. The measurements show that ferri(o)magnetic minerals have no significant influence on the cyclicity of the magnetic susceptibility, which is dominated by paramagnetic and diamagnetic minerals and reflects changes of sediment input from the Congo River. The Fe, Ti, K, and Mn concentrations covary with the magnetic susceptibility where high concentrations of these elements correlate with intervals of high susceptibility and low concentrations with intervals of low susceptibility. The Ca counts correlate well with the calcium carbonate concentration but do not show the same cyclicity as the other elements or the susceptibility. With the exception of the Ca concentration, which is significantly higher in the upper interval, and the magnetic grain size, which indicates that less fine grained magnetite is present in the lower interval, no significant differences in the properties of the upper and the lower intervals were detected.
Resumo:
Magnetostratigraphy has been serving as a valuable tool for dating and confirming chronologies of lacustrine sediments in many parts of the world. Suitable paleomagnetic records on the Tibetan Plateau (TP) and adjacent areas are, however, extremely scarce. Here, we derive paleomagnetic records from independently radiocarbon-dated sediments from two lakes separated by 250 km on the southern central TP, Tangra Yumco and Taro Co. Studied through alternating field demagnetization of u-channel samples, characteristic remanent magnetization (ChRM) directions document similar inclination patterns in multiple sediment cores for the past 4000 years. Comparisons to an existing record from Nam Co, a lake 350 km east of Tangra Yumco, a varve-dated record from the Makran Accretionary Wedge, records from Lakes Issyk-Kul and Baikal, and a stack record from East Asia reveal many similarities in inclination. This regional similarity demonstrates the high potential of inclination to compare records over the Tibetan Plateau and eventually date other Tibetan records stratigraphically. PSV similarities over such a large area (>3000 km) suggest a large-scale core dynamic origin rather than small scale processes like drift of the non-dipole field often associated with PSV records.
Resumo:
Dating of sediment cores from the Baltic Sea has proven to be difficult due to uncertainties surrounding the 14C reservoir age and a scarcity of macrofossils suitable for dating. Here we present the results of multiple dating methods carried out on cores in the Gotland Deep area of the Baltic Sea. Particular emphasis is placed on the Littorina stage (8 ka ago to the present) of the Baltic Sea and possible changes in the 14C reservoir age of our dated samples. Three geochronological methods are used. Firstly, palaeomagnetic secular variations (PSV) are reconstructed, whereby ages are transferred to PSV features through comparison with varved lake sediment based PSV records. Secondly, lead (Pb) content and stable isotope analysis are used to identify past peaks in anthropogenic atmospheric Pb pollution. Lastly, 14C determinations were carried out on benthic foraminifera (Elphidium spec.) samples from the brackish Littorina stage of the Baltic Sea. Determinations carried out on smaller samples (as low as 4 µg C) employed an experimental, state-of-the-art method involving the direct measurement of CO2 from samples by a gas ion source without the need for a graphitisation step - the first time this method has been performed on foraminifera in an applied study. The PSV chronology, based on the uppermost Littorina stage sediments, produced ten age constraints between 6.29 and 1.29 cal ka BP, and the Pb depositional analysis produced two age constraints associated with the Medieval pollution peak. Analysis of PSV data shows that adequate directional data can be derived from both the present Littorina saline phase muds and Baltic Ice Lake stage varved glacial sediments. Ferrimagnetic iron sulphides, most likely authigenic greigite (Fe3S4), present in the intermediate Ancylus Lake freshwater stage sediments acquire a gyroremanent magnetisation during static alternating field (AF) demagnetisation, preventing the identification of a primary natural remanent magnetisation for these sediments. An inferred marine reservoir age offset (deltaR) is calculated by comparing the foraminifera 14C determinations to a PSV & Pb age model. This deltaR is found to trend towards younger values upwards in the core, possibly due to a gradual change in hydrographic conditions brought about by a reduction in marine water exchange from the open sea due to continued isostatic rebound.
Resumo:
Transmission electron microscopy observations and rock magnetic measurements reveal that alteration of fine- and large-grained iron-titanium oxides can occur at different rates. Fine-grained titanomagnetite occurs as a crystallization product within interstitial glass that originated as an immiscible liquid within a fully differentiated melt; in several samples with ages to 32 Ma it displays very little or no oxidation (z = ca. 0). In contrast, samples with ages of 10 Ma or older are observed to also contain highly oxidized (z >/= 0.66) large-grained titanomaghemite. These large grains, having originated by direct crystallization from melt, are associated with pore space. Such pore space can serve as a conduit for fluids that promote alteration, whereas fine grains may have been "armored" against alteration by the glass matrix in which they are embedded. Apparently, alteration of oceanic crust is a heterogeneous process on a microscopic scale. The existence of pristine, fine-grained titanomagnetite in the interstitial glass of older ocean-floor basalts that have undergone significant alteration implies that such glassy material is capable of carrying original thermal remanent magnetization and may be suitable for paleointensity determinations.
Resumo:
Magnetic fabrics of serpentinized peridotites are related to anisomorphic magnetite formed during serpentinization. In the less serpentinized facies they are, however, mainly mimetic of the high temperature deformation prior to serpentinization. In more serpentinized peridotites, the magnetic fabrics, related to magnetite veins which are more developed in this case, are superimposed on mimetic fabrics. Remanent properties, hysteresis loop parameters, and Curie temperatures were measured. Natural remanent magnetizations (NRM) have crystallization remanent magnetic (CRM) origin. Measured magnetic parameters suggest that pseudo-single domain (PSD) grains of magnetite are present in samples with low degree of serpentinization. The samples with high degree of serpentinization contain mainly multi-domain (MD) magnetite grains.
Resumo:
Paleomagnetic and rock-magnetic investigations of basalts from Hole 834B in the Lau backarc basin and of sediments from Holes 841A and 841B at the Tonga Ridge are reported. Three groups of blocking temperatures in the basalts suggest the presence of at least three magnetic phases: pure magnetite, a Ti-poor titanomagnetite, and a Ti-rich phase. The drill-string-induced remanence in the basalts is typically between three and six times the original normal remanent magnetization intensity, but it is mostly removed by alternating-field (AF) cleaning in 5 mT. Volume susceptibility values range from 0.04 * 10**-3 to 4 * 10**-3 cgs. The modified Q-ratio J5/sus ranges from 0.5 to 10. The drill-string-induced remanence behaves different in the two sediment cores from Holes 841A and 841B, which may be the result of differences in the sediment or caused by the different drilling equipment used. The AF-cleaned inclinations of the sediment in Holes 841A and 841B suggest a slight flattening with increasing depth (up to 6° under a load of 400 m of sediment) to be present. This flattening is likely to be caused by the differential rotation of detrital particles under compaction during diagenesis.
Resumo:
We have studied the magnetic properties of 22 samples from DSDP Leg 83 to determine the origin of remanence and its relationship to such problems as the tectonic and chemical evolution of the section, the depth of the magnetized layer, and the applicability of magnetic properties of ophiolites to the marine crust. The magnitude of natural remanence has fairly typical values in the uppermost part of the section, falls two to three orders of magnitude in the transition zone, and returns to values slightly less than the upper part in the dike complex. This behavior reflects, for the most part, variations in the amount of magnetic minerals present. Directional behavior is highly variable throughout the section and often shows complexity even on the level of a single sample. Curie temperature measurements and preliminary opaque petrography indicate that the remanence is chemical in origin and probably involves a resetting of the original thermal remanent magnetization (TRM) direction. Selective destructive demagnetization of four breccia samples shows that the remanence of the clasts was acquired prior to consolidation and did not change significantly thereafter. There are also indications that some of the remanence may be carried by secondary magnetic phases. A comparison of these samples with comparable ophiolite rocks is equivocal, with similarities in remanence characteristics but differences in magnetic mineralogy. As for magnetic anomalies, the transition zone is too weakly magnetized to contribute significantly. The available data on the dike complex are inconclusive and their contribution is still open to debate.
Resumo:
The results of paleomagnetic studies of samples from DSDP Leg 78A are reported. For Site 541, the interval from 60 to 200 m sub-bottom was correlated with the Matuyama through Gilbert polarity epochs. For Site 543, the interval from 150 to 190 m sub-bottom was correlated with marine magnetic Anomalies 5C through 5E. Down-dip directions of tilted beds inferred from declination values for Sites 541 and 542 suggest a pattern of monoclinal folding. Results from basalt samples are comparable to those from other DSDP sites in relatively old basalts.
Resumo:
The voluminous volcanic eruptions in the Nauru Basin, Western Pacific, have long been regarded as important research targets for tectonic history of the Pacific Plate and for the widespread Cretaceous volcanic activity in the Western Pacific. The Nauru Basin volcanic rocks were recovered at Site 462 by Deep Sea Drilling Project (DSDP) Legs 61 and 89, where more than 600 m of lavas and sills were drilled, thereby making it the deepest penetration into crust of Cretaceous age in the Pacific Ocean. For paleomagnetism, this section represents a unique possibility for averaging out secular variation to obtain a reliable paleolatitude estimate. However, previous paleomagnetic studies have only been subjected to alternating field (AF) demagnetization on several core samples, thus, unable to provide comprehensive understanding on the paleolatitude of the basin. The work reported here aims to determine the Cretaceous paleomagnetic paleolatitude for the Pacific Plate and define the magnetostratigraphy for the basaltic sections drilled in the Nauru Basin. A total of 391 basaltic rock samples were carefully re-sampled from DSDP Sites 462 and 462A. Stepwise thermal and AF demagnetizations have isolated characteristic components in the majority of the samples. The most important findings from this study include: (1) Two normal and one reversed polarity intervals are identified in Site 462, and six normal and six reversed polarity intervals are found in Site 462A, although possible erroneous markings of the opposite azimuth for some reversed polarity cores during the DSDP coring cannot be completely ruled out. (2) Based on previous radiometric ages, the magnetostratigraphic correlations with the Geomagnetic Polarity Time Scale (GPTS) indicate that the lower-basaltic flow unit in Site 462A began to erupt at least before 130 Ma. No correlation is available for the upper-sill unit. (3) Paleosecular variation for the lower-flow unit has been sufficiently averaged out; whereas bias may exist for that of the upper-sill unit; (4) The calculated mean inclination of ~50° for the lower-flow unit yields a paleolatitude of 30.8°S for the Nauru Basin at the time of emplacement. This value is well to the north of suggested location in plate reconstruction models, suggesting that there has been a significant amount of apparent polar wander of the Nauru Basin and Pacific plate since 130 Ma. In addition, the paleolatitude for the Nauru Basin is ~7° further south and the basin's age is more than 10 my older than those of the Ontong Java Plateau (OJP), which suggest that the volcanic eruptions of the lower flows in the Nauru Basin are unlikely related to the emplacement of the Ontong Java Plateau.
Resumo:
In this manuscript, we present rock magnetic results of samples recovered during Leg 183. The Leg 183 cores were recovered from six drill sites and display variable rock magnetic properties. The differences in the rock magnetic properties are a function of mineralogy and alteration. Cretaceous subaerial basalt samples with titanomagnetite exhibit a strong Verwey transition in the vicinity of 110 K and have frequency-dependent susceptibility curves that resemble those of synthetic (titano) magnetites. These results are in good agreement with the thermomagnetic characteristics where titanomagnetites with Curie temperatures of ~580°C were identified. The hysteresis ratios suggest that the bulk magnetic grain size is in the psuedo-single-domain boundary. These subaerial basalts experienced high-temperature oxidation and maintained reliable paleomagnetic records. In contrast, the 34-Ma submarine pillow basalts do not show the Verwey transition during the low-temperature experiments. Thermomagnetic analysis shows that the remanent magnetization in this group is mainly carried by a thermally unstable mineral titanomaghemite. The frequency-dependent relationships are opposite of those from the first group and show little sign of titanomagnetite characteristics. Rocks from the third group are oxidized titanomagnetites and have multiple magnetic phases. They have irreversible thermaomagnetic curves and hysteresis ratios clustering toward the multidomain region (with higher Hcr/Hc ratios). The combined investigation suggests that variations in magnetic properties correlate with changes in lithology, which results in differences in the abundance and size of magnetic minerals. The rock magnetic data on Leg 183 samples clearly indicate that titanomagnetite is the dominant mineral and the primary remanence carrier in subaerial basalt. The generally good magnetic stability and other properties exhibited by titanomagnetite-bearing rocks support the inference that the ChRM isolated from the Cretaceous sites were acquired during the Cretaceous Normal Superchron. The stable inclinations identified from these samples are therefore useful for future tectonic studies.