321 resultados para LETHAL TEMPERATURES
Resumo:
Concerns about the impacts of ocean acidification on marine life have mostly focused on how reduced carbonate saturation affects calcifying organisms. Here, we show that levels of CO2-induced acidification that may be attained by 2100 could also have significant effects on marine organisms by reducing their aerobic capacity. The effects of temperature and acidification on oxygen consumption were tested in 2 species of coral reef fishes, Ostorhinchus doederleini and O. cyanosoma, from the Great Barrier Reef, Australia. The capacity for aerobic activity (aerobic scope) declined at temperatures above the summer average (29°C) and in CO2-acidified water (pH 7.8 and ~1000 ppm CO2) compared to control water (pH 8.15). Aerobic scope declined by 36 and 32% for O. doederleini and O. cyanosoma at temperatures between 29 to 32°C, whereas it declined by 33 and 47% for O. doederleini and O. cyanosoma in acidified water compared to control water. Thus, the declines in aerobic scope in acidified water were similar to those caused by a 3°C increase in water temperature. Minimum aerobic scope values of ~200 mg O2 kg-1 h-1 were attained for both species in acidified water at 32°C, compared with over 600 mg O2 kg-1 h-1 in control water at 29°C. Mortality rate increased sharply at 33°C, indicating that this temperature is close to the lethal thermal limit for both species. Acidification further increased the mortality rate of O. doederleini, but not of O. cyanosoma. These results show that coral reef fishes are sensitive to both higher temperatures and increased levels of dissolved CO2, and that the aerobic performance of some reef fishes could be significantly reduced if climate change continues unabated.
Resumo:
During the mid-Pleistocene transition the dominant 41 ka periodicity of glacial cycles transitioned to a quasi-100 ka periodicity for reasons not yet known. This study investigates the potential role of deep ocean hydrography by examining oxygen isotope ratios in benthic foraminifera. Oxygen isotope records from the Atlantic, Pacific and Indian Ocean basins are separated into their ice volume and local temperature/hydrography components using a piece-wise linear transfer function and a temperature calibration. Although our method has certain limitations, the deep ocean hydrography reconstructions show that glacial deep ocean temperatures approached freezing point as the mid-Pleistocene transition progressed. Further analysis suggests that water mass reorganisation could have been responsible for these temperature changes, leading to such stable conditions in the deep ocean that some obliquity cycles were skipped until precessional forcing triggered deglaciation, creating the apparent quasi-100 ka pattern. This study supports previous work that suggests multiples of obliquity cycles dominate the quasi-100 ka glacial cycles with precession components driving deglaciations.
Resumo:
Three mid-Holocene sea surface temperature (SST) records spanning more than 30 years were reconstructed for the northern South China Sea using Sr/Ca ratios in Porites corals. The results indicate warmer than present climates between circa 6100 yr B.P. and circa 6500 yr B.P. with the mid-Holocene average minimum monthly winter SSTs, the average maximum monthly summer SSTs, and the average annual SSTs being about 0.5°-1.4°C, 0°-2.0°C, and 0.2°-1.5°C higher, respectively, than they were during 1970-1994. Summer SSTs decrease from circa 6500 yr B.P. to circa 6100 yr B.P. with a minimum centered at circa 6300 yr B.P. The higher average summer SSTs are consistent with a stronger summer monsoon during the mid-Holocene, and the decreasing trend indicates a secular decrease of summer monsoon strength, which reflects the change in summer insolation in the Northern Hemisphere. El Niño-Southern Oscillation (ENSO) cycles were apparent in both the mid-Holocene coral and modern instrumental records. However, the ENSO variability in the mid-Holocene SSTs was weaker than that in the modern record, and the SST record with the highest summer temperatures from circa 6460 yr B.P. to 6496 yr B.P. shows no robust ENSO cycle. This agrees with other studies that indicate that stronger summer monsoon circulation may have been associated with suppressed ENSO variability during the mid-Holocene.