158 resultados para Islands of the Adriatic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seven cores from the West African continental margin in 12-18° N have been investigated by means of a coarse fraction analysis. Four of the seven cores contain allochthonous material: turbidites and debris flow deposits. The source of the allochthonous material is in about 300-600 m water depth. The age of the slide induced debris flow deposits is at the end of oxygen isotope stage 2. One debris flow deposit is covered by a turbidite (core GIK13211-1). The turbidites in the deep-sea core GIK13207-3 originate from river-influenced sediments from the West-African continental margin, whereas the autochthonous sequences are influenced by volcanic material from the Cape Verde Islands. Particle by particle supply from upper slope areas has been found in all four cores from the continental slope. Current sorting occurs on the submarine diapir (core GIK13289-3), whereas core GIK13291-1 on the NW-flanc, 200 m below core GIK13289-3, has no current sorting, except for stage 1 and parts of stage 5. The current sorting is reflected by parallel variations of median diameters of whole tests and of fragments of planktonic foraminifers, by higher median diameters of foraminifers on top of the diapir, by reduced accumulation rates and increased sand fraction percentages in core GIK13289-3 compared to core GIK13291-1. The Late Quarternary climatic history of the West-African near coastal area (12-18° N) has been redrawn: - in oxygen isotope stage 1 a humid climate is found in 12-18° N (This "humid impression" in 18° N, which is actually an arid area, is due to the poleward directed undercurrent, which transports Senegal river material to the north). - in oxygen isotope stage 2 an arid climate existed in 14-18° N, whereas in 12° N river discharfe persisted. But within stage 2 dune formation occured in 12° N on the (dry) shelf, additionally to fluviatile sediment input. - Older periods are preserved in autochthonous sediments of core GIK13289-3 and GIK13291-1, where oxygen stage 3,5 and 7 (the latter only in core GIK13289-3 present) show a humid climate (as well as in stage 5 of core GIK13255-3), interrupted by short arid intervals in core GIK12389-3, and stage 4 and 6 show an arid climate, interrupted by short humid periods The allochthonous stage 5 sediment in core GIK13211-1 also reflects a humid climate. The dissolution of planktonic foraminifers is strongest in th eLate Holocene and shows a minimum in the early Holocene, where also pteropods are preserved. The degree of carbonate dissolution is related mainly to the fine matter content (< 63 µm) whereas water depth is a less decisvive factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper allivalites, coarse- and giant-textured olivine-anorthite rocks occurring as separate blocks in the eruption products of many volcanoes from the frontal part of the Kuril-Kamchatka Arc are under consideration. New data are reported on petrography, mineralogy, and composition of melt inclusions in minerals from ten allivalite samples collected at Ksudach, Ilinsky, Zavaritsky, Kudryavy, and Golovnin Volcanoes. Crystallization temperatures of allivalite minerals were estimated as 970-1080°C at melt water content of 3.0-3.5 wt % and oxygen fugacity NNO=1-2. Genetic connection was established between compositions of melt inclusions and interstitial glasses in allivalites and volcanic rocks. Cumulate nature of allivalites was demonstrated. Using mass balance calculations, degree of fractionation of primary melts during formation of cumulate layers was estimated for various volcanoes as 22-46%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples collected from the coarse basal portions of mid-Cretaceous volcaniclastic turbidites from the Mariana and Pigafetta basins are remarkably similar in terms of the petrographic and chemical features of their igneous clasts and bulk rock composition. Clasts of magmatic origin are dominated by glassy vesicular shards, variably phyric, holocrystalline basalts, and crystal fragments (olivine, clinopyroxene, plagioclase, amphibole, and biotite). The composition of the pyroxenes and amphiboles are typical of those found in differentiated hydrous alkali basalts. The bulk chemical composition of the volcaniclastites (based on stable incompatible elements and their ratios in highly vitric samples) is characteristic of alkali basalts found in within-plate oceanic eruptive environments. Miocene volcaniclastites from Site 802 are broadly similar to the Cretaceous samples in terms of clast type and bulk composition, and have also been derived from an oceanic alkali basalt source. The chemistry of the Miocene volcaniclastites differ, however, in having distinctive Zr/Y and Zr/Nb ratios and a more restricted chemical composition. The magmatic products of nearly emergent seamounts within the western Pacific basins appears to have been dominated by alkali basalt volcanism during the mid-Cretaceous and also the Miocene. The highly vitric nature of the Cretaceous and Miocene volcaniclastites, together with the morphology and vesicularity of their shards, suggests that they are the reworked (via mass flow) products of hyaloclastite accumulations produced in a shallow-water eruptive environment, such as that adjacent to nearly emergent seamounts or ocean islands. The association of ooids, reefal debris, and, in rare cases, woody material with the volcaniclastites supports their shallow-water derivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terrestrial organic matter (OM) in pelagic sediments is discussed with regard to depositional processes and land-sea interactions in the modern and past glacial/interglacial Equatorial Atlantic. Special emphasis is placed on a critical evaluation of different analytical approaches (C/N, Rock-Eval Pyrolysis, stable carbon isotopes, palynology, organic petrology, and selected biomarkers) which are currently used for the qualitative and quantitative assessment of terrigenous organic carbon. If binary mixing equations are used to calculate terrestrial and marine proportions of organic carbon, we consider the definition of endmember values to be most critical since these values may be biased by a great number of independent controls. A combination of geochemical methods including optical studies (organic petrology and palynology) is therefore suggested to evaluate each individual proxy. Organic geochemical analyses performed on sediments from the modern and Late Quaternary Equatorial Atlantic evidence fluctuations in eolian supply of terrigenous OM related to changes in intensity of the trade winds. Quantification of this organic fraction leads to differing proportions depending on the approach applied, i.e. the organic carbon isotopic composition or maceral analyses. Modern distribution of terrigenous OM reveals a decrease in supply towards the basin contributing less than a fifth of the total OM in pelagic areas. Organic geochemical data indicate that sedimentation in the modern northeastern Brasil Basin is affected by lateral advection of reworked OM probably from southern source areas. Glacial/interglacial deposits from the pelagic Equatorial Atlantic (ODP Site 663), covering isotopic stages 12 and 11, reveal that deposition of terrigenous OM was higher under past glacial conditions, in correspondence to generally enhanced dust fluxes. Proportions of terrigenous OM, however, never exceed 50% of the total OM according to maceral analyses. Other estimates, recently proposed by Verardo and Ruddiman (1996), are considered to be too high probably for analytical reasons. Palynological records in the Equatorial Atlantic parallel dust records. Increased portions of grass pollen suggest the admixture of C4-plant material under modern and past glacial conditions. It is therefore assumed, as one possible interpetation, that C4-plant debris has an effect on sedimentary d13Corg and might explain differences between isotopic and microscopic quantitative estimates. Using the difference between these two records, we calculate that maximum supply of C4-material remains below 20% of the total OM for the deep modern and past glacial/interglacial Equatorial Atlantic.