148 resultados para Fe-ZSM-5
Resumo:
Sediments from near the basement of a number of Deep Sea Drilling Project (DSDP) sites, from the Bauer Deep, and from the East Pacific Rise have unusually high transition metal-to-aluminum ratios. Similarities in the chemical, isotopic, and mineralogical compositions of these deposits point to a common origin. All the sediments studied have rare-earth-element (REE) patterns strongly resembling the pattern of sea water, implying either that the REE's were coprecipitated with ferromanganese hydroxyoxides (hydroxyoxides denote a mixture of unspecified hydrated oxides and hydroxides), or that they are incorporated in small concentrations of phosphatic fish debris found in all samples. Oxygen isotopic data indicate that the metalliferous sediments are in isotopic equilibrium with sea water and are composed of varying mixtures of two end-member phases with different oxygen isotopic compositions: an iron-manganese hydroxyoxide and an iron-rich montmorillonite. A low-temperature origin for the sediments is supported by mineralogical analyses by x-ray diffraction which show that goethite, iron-rich montmorillonite, and various manganese hydroxyoxides are the dominant phases present. Sr87/Sr86 ratios for the DSDP sediments are indistinguishable from the Sr87/Sr86 ratio in modern sea water. Since these sediments were formed 30 to 90 m.y. ago, when sea water had a lower Sr87/Sr86 value, the strontium in the poorly crystalline hydroxyoxides must be exchanging with interstitial water in open contact with sea water. In contrast, uranium isotopic data indicate that the metalliferous sediments have formed a closed system for this element. The sulfur isotopic compositions suggest that sea-water sulfur dominates these sediments with little or no contribution of magmatic or bacteriologically reduced sulfur. In contrast, ratios of lead isotopes in the metalliferous deposits resemble values for oceanic tholeiite basalt, but are quite different from ratios found in authigenic marine manganese nodules. Thus, lead in the metalliferous sediments appears to be of magmatic origin. The combined mineralogical, isotopic, and chemical data for these sediments suggest that they formed from hydrothermal solutions generated by the interaction of sea water with newly formed basalt crust at mid-ocean ridges. The crystallization of solid phases took place at low temperatures and was strongly influenced by sea water, which was the source for some of the elements found in the sediments.
Resumo:
In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox conditions. Foraminiferal tests are often contaminated by diagenetic coatings, like Mn rich carbonate- or Fe and Mn rich (oxyhydr)oxide coatings. Thus, it is substantial to assure that the cleaning protocols are efficient or that spots chosen for microanalyses are free of contaminants. Prior to the determination of the element/Ca ratios, the distributions of several elements (Ca, Mn, Fe, Mg, Ba, Al, Si, P and S) in tests of the shallow infaunal species Uvigerina peregrina and Bolivina spissa were mapped with an electron microprobe (EMP). To visualize the effects of cleaning protocols uncleaned and cleaned specimens were compared. The cleaning protocol included an oxidative cleaning step. An Fe rich phase was found on the inner test surface of uncleaned U. peregrina specimens. This phase was also enriched in Al, Si, P and S. A similar Fe rich phase was found at the inner test surface of B. spissa. Specimens of both species treated with oxidative cleaning show the absence of this phase. Neither in B. spissa nor in U. peregrina were any hints found for diagenetic (oxyhydr)oxide or carbonate coatings. Mn/Ca and Fe/Ca ratios of single specimens of B. spissa from different locations have been determined by secondary ion mass spectrometry (SIMS). Bulk analyses using solution ICP-MS of several samples were compared to the SIMS data. The difference between SIMS analyses and ICP-MS bulk analyses from the same sampling sites was 14.0-134.8 µmol mol-1 for the Fe/Ca and 1.68(±0.41) µmol mol-1 for the Mn/Ca ratios. This is in the same order of magnitude as the variability inside single specimens determined with SIMS at these sampling sites (1sigma[Mn/Ca] = 0.35-2.07 µmol mol-1; 1sigma[Fe/Ca] = 93.9-188.4 µmol mol-1). The Mn/Ca ratios in the calcite were generally relatively low (2.21-9.93 µmol mol-1) but in the same magnitude and proportional to the surrounding pore waters (1.37-6.67 µmol mol-1). However, the Fe/Ca ratios in B. spissa show a negative correlation to the concentrations in the surrounding pore waters. Lowest foraminiferal Fe/Ca ratios (87.0-101.0 µmol mol-1) were found at 465 m water depth, a location with a strong sharp Fe peak in the pore water next to the sediment surface and respectively, high Fe concentrations in the surrounding pore waters. Previous studies found no living specimens of B. spissa at this location. All these facts hint that the analysed specimens already were dead before the Fe flux started and the sampling site just recently turned anoxic due to fluctuations of the lower boundary of the OMZ near the sampling site (465 m water depth). Summarized Mn/Ca and Fe/Ca ratios are potential proxies for redox conditions, if cleaning protocols are carefully applied. The data presented here may be rated as base for the still pending detailed calibration.