125 resultados para FE(III) COMPLEX
Resumo:
The majority of the basalts drilled on Leg 65 in the Gulf of California are aphyric to sparsely phyric massive flows ranging in average thickness between 5 meters in the upper part of the sections in Holes 483 and 483B, where they are interlayered with sediment, and 14 meters in Hole 485A, where interlayered sediments constitute more than half of the section. Massive flows interlayered with pillows are generally less than 4 meters thick. The pillow lavas recovered are more phyric (up to 15 modal%) and contain two to three generations of plagioclase and olivine ± clinopyroxene. Plagioclase generally exceeds 60% of any given phenocryst assemblage. Resorbed olivine, clinopyroxene, and plagioclase megacrysts may reflect a high-pressure stage, the phenocrysts crystallizing in the main magma chamber and the skeletal microphenocrysts in dikes. Precise measurements of length/width ratios of different phenocryst types and compositions show low aspect ratios and large crystal volumes for early crystals and high ratios and low volumes for late crystals grown under strong undercooling conditions. The minerals examined show wide ranges in composition: in particular, plagioclase ranges from An92 to An36; clinopyroxene ranges from Ca41Mg51Fe8 in the cores of phenocrysts to Ca40**36 Mg45**49Fe15**20 in the groundmass; and olivine ranges from Fo86 to Fo81. The wide range in mineral compositions, together with evidence of disequilibrium based on textures and comparisons of glass and mineral compositions, indicate complex crystallization histories involving both polybaric crystal fractionation and magma mixing.
Resumo:
Organic complexation of dissolved iron (dFe) was investigated in the Atlantic sector of the Southern Ocean in order to understand the distribution of Fe over the whole water column. The total concentration of dissolved organic ligands ([Lt]) measured by voltammetry ranged between 0.54 and 1.84 nEq of M Fe whereas the conditional binding strength (K') ranged between 10**21.4 and 10**22.8. For the first time, trends in Fe-organic complexation were observed in an ocean basin by examining the ratio ([Lt]/[dFe]), defined as the organic ligand concentration divided by the dissolved Fe concentration. The [Lt]/[dFe] ratio indicates the saturation state of the natural ligands with Fe; a ratio near 1 means saturation of the ligands leading to precipitation of Fe. Reversely, high ratios mean Fe depletion and show a high potential for Fe solubilisation. In surface waters where phytoplankton is present low dissolved Fe and high variable ligand concentrations were found. Here the [Lt]/[dFe] ratio was on average 4.4. It was especially high (5.6-26.7) in the HNLC (High Nutrient, Low Chlorophyll) regions, where Fe was depleted. The [Lt]/[dFe] ratio decreased with depth due to increasing dissolved Fe concentrations and became constant below 450 m, indicating a steady state between ligand and Fe. Relatively low [Lt]/[dFe] ratios (between 1.1 and 2.7) existed in deep water north of the Southern Boundary, facilitating Fe precipitation. The [Lt]/[dFe] ratio increased southwards from the Southern Boundary on the Zero Meridian and from east to west in the Weddell Gyre due to changes both in ligand characteristics and in dissolved iron concentration. High [Lt]/[dFe] ratio expresses Fe depletion versus ligand production in the surface. The decrease with depth reflects the increase of [dFe] which favours scavenging and (co-) precipitation, whereas a horizontal increase in the deep waters results from an increasing distance from Fe sources. This increase in the [Lt]/[dFe] ratio at depth shows the very resistant nature of the dissolved organic ligands.
Resumo:
Basalts from Hole 504B, Leg 83, exhibit remarkable uniformity in major and trace element composition throughout the 1075.5 m of basement drilled. The majority of the basalts, Group D', have unusual compositions relative to normal (Type I) mid-ocean ridge basalts (MORB). These basalts have relatively high mg values (0.60-0.70) and CaO abundances (11.7-13.7%; Ca/Al = 0.78-0.89), but exhibit a marked depletion in compatible trace elements (Cr and Ni); moderately incompatible trace elements (Zr, Y, Ti, etc.); and highly incompatible trace elements (Nb, LREE, etc.). Petrographic and compositional data indicate that most of these basalts are evolved, having fractionated significant amounts of plagioclase, olivine, and clinopyroxene. Melting experiments on similar basalt compositions from the upper portion of Hole 504B (Leg 70; Autio and Rhodes, 1983) indicate that the basalts are co-saturated with olivine and plagioclase and often clinopyroxene on the 1-atm. liquidus. Two rarely occurring groups, M' and T, are compositionally distinct from Group D' basalts. Group T is strongly depleted in all magmaphile elements except the highly incompatible ones (Nb, La, etc.), while Group M' has moderate concentrations of both moderately and highly incompatible trace elements and is similar to Type I MORB. Groups M' and T cannot be related to Group D' nor to each other by crystal fractionation, crystal accumulation, or magma mixing. The large differences in magmaphile element ratios (Zr/Nb, La/Yb) among these three chemical groups may be accounted for by complex melting models and/or local heterogeneity of the mantle beneath the Costa Rica Ridge. Xenocrysts and xenoliths of plagioclase and clinopyroxene similar in texture and mineral composition to crystals in coarse-grained basalts from the lower portion of the hole are common in Hole 504B basalts. These suggest that addition of solid components either from conduit or magma chamber walls has occurred and may be a common source of disequilibrium crystals in these basalts. However, mixing of plagioclase-laden depleted melts (similar to the Costa Rica Ridge Zone basalts) with normal MORB magmas could provide an alternate source for some refractory plagioclase crystals found out of equilibrium in many phyric MORB. The uniformity of major element compositions in Hole 504B basalts affords an ideal situation for investigating the effects of alteration on some major and trace elements in oceanic basalts. Alteration observed in whole-rock samples records primarily two events - a high-temperature and a low-temperature phase. High-temperature phases include: chlorite, talc, albite, actinolite, sphene, quartz, and pyrite. The low-temperature phases include smectite (saponite), epistilbite or laumontite, and minor calcite. Laumontite may actually straddle the gap between the low- and high-temperature mineral assemblages. Alteration is restricted primarily to partial replacement of primary phases. Metamorphic grade, in general, increases from the top to the bottom of Hole 504B (Legs 69, 70, and 83) as seen in the change from a smectiteto- chlorite-dominated secondary mineral assemblage. However, a systematic progression for the interval recovered during Leg 83 is not apparent. Rather, the extent of alteration appears to be a function of the initial texture and fracture density. Variations in whole-rock major and trace element concentrations cannot be attributed convincingly to any differences in alteration observed. Compositional characteristics of the secondary minerals indicated that extensive remobilization of elements has not occurred; local redistribution is suggested in most cases. Thus, the major and trace element signature of these basalts remains effectively the same as the original composition prior to alteration.
Resumo:
During Leg 109 of the Ocean Drilling Program, about 100 m of serpentinized peridotites were drilled on the western wall of the M.A.R. axial rift valley, 45 km south of the Kane Fracture Zone. The present study reports petrological and mineralogical data obtained from 29 small pieces of these ultramafic rocks, including about 60% serpentinized harzburgites, 26% serpentinized lherzolites, 14% serpentinized dunites, and one sample of olivine websterite. Modal analyses show that all these rocks are plagioclase-free four-phase peridotites equilibrated in the spinel lherzolite facies. The estimated average modal composition of the sample set is about 80% olivine, 14% opx, 5% cpx, and 1% spinel, that is, a cpx-poor lherzolite. The well developed porphyroclastic structures and mineralogical characteristics of these rocks indicate their affinity with the group of residual mantle tectonites, among the abyssal peridotites. Features typical of magmatic cumulates are lacking. The high contents in Al2O3 of the cpx (average 5.4%) and of the opx (average 4.3%) porphyroclasts, the low Cr# of the spinels (average 22.9%), and the rather high content in modal cpx (about 5%), indicate a moderate percentage of melting, of the order of 10%-15%. Site 670 peridotites plot close to the least depleted mantle rocks collected in the oceans in most diagrams used to define the average trend of the ocean-floor peridotites. Microprobe traverses across the cores of the exsolved opx and cpx porphyroclasts permitted the recalculation of the magmatic compositions of these pyroxenes: the 'primitive' opx were equilibrated at about 1300°C, probably at the end of the main melting episodes, whereas the 'primitive' cpx show lower equilibration temperatures, at about 1200°C, reflecting a more complex thermal history. The subsolidus evolution is well recorded, from 1200°C to about 950CC, by the exsolved pyroxenes and the olivine and spinel phases. Unusually high blocking temperatures, close to 1000°C, indicate that the peridotite body was cooled very rapidly between 1000°C and the beginning of serpentinization. Oxygen fugacities, calculated for 10 kb and at the blocking temperatures indicated by the olivine/spinel geothermometer, are close to the usual fugacities calculated in oceanic peridotites and basalts (of the order of 10**-10 to 10**-11, on the QFM buffer). Site 670 peridotites have compositions close to those of the peridotites collected in the Kane Fracture Zone area, and obviously belong to the moderately depleted mantle peridotites which characterize abyssal peridotites collected away from mantle plumes and oceanic islands. In particular, they differ from the highly residual harzburgites collected along the M.A.R. over the Azores bulge.
Resumo:
Mineral and whole-rock geochemical data are presented for chilled dike margins from the lower sheeted dike complex of Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) Hole 504B. Compositions of phenocrystic plagioclase (An80-89); olivine (Fo82-86); clinopyroxene (Wo52En40Fs8, with Cr2O3 up to 1.2%); and rare chromian spinel (Cr# 43) are consistent with those from the lavas and the upper dike complex recovered previously (DSDP Legs 69, 70, 83, and ODP Leg 111). Major and trace element compositions fall in group D of Autio and Rhodes (1983) and have high CaO/Na2O, and low TiO2, K2O, and (La/Sm)N values consistent with previous analyses from this site.
Resumo:
A large fragment of a paleovolcano of Silurian to Early Devonian age was discovered in the Voikar volcanic belt suggesting an ensimatic island are as its geodynamic environment. Formationally, the rocks under study are comparable to Pleistocene island arc volcanites and their paleo-analogues. The volcanites of the Toupugol complex underwent strong hydrothermal-metasomatic alteration: propylites, acid metasomatic rocks and quartz-carbonate veins, which must have resulted from hydrothermal-metasomatic alteration of andesitoids. Both volcanites and apovolcanic hydrothermal rocks in Toupugol were found to host noble metal mineralisation. It is found in close association with sulphides, particularly pyrite. Free gold was discovered in all investigated volcanites and hydrothermal rocks and is characterised by low mercury content and an unusual set of microimpurities (Pt, Pd, Cu, Fe, S) suggesting its links to the mantle substrate.
Resumo:
Geochemical (atomic absorption, neutron activation analyses), mineralogical (microprobe), and radiometric (40K - 40Ar) data are presented for five basalts from the Guatemala Trench area (Deep Sea Drilling Project, Leg 84). Strong geochemical and mineralogical differences distinguish two types among these basalts: (1) One basalt (Sample 567A-19,CC), recovered below Upper Cretaceous limestone has the following characteristics: it is quartz normative and has low TiO2, content, as well as low amounts of Cr, Ni and other transition metals, an LREE depleted pattern, and affinities of clinopyroxene phenocryst plotted into the field of tholeiitic and calc-alkalic pyroxenes. (2) Four alkaline basalts, recovered from the mafic and ultramafic acoustic basement, are nepheline normative and show high TiO2 content, high amounts of Cr, Ni and so on, an LREE enriched pattern and compositions of clinopyroxene phenocryst plotted close to or within the field of alkali basalt pyroxenes. These basalts are comparable to those recognized in the lower part of the Santa Elena complex and are clearly different from the oceanic basalts of the Cocos Plate. The radiometric age of the orogenic basalt seems to be close to 80 Ma. The alkaline basalts are clearly older, even if a discrepancy appears between the results of different analyses because of the secondary effects of alteration.
Resumo:
The book deals with results of complex geological and geophysical studies in the Doldrums and Arkhangelsky Fracture Zones of the Central Atlantic. Description of the main features of bottom relief, sediments and crustal structure, geomagnetic field, composition of igneous and sedimentary rocks are given in the book. The authors made conclusions on tectonic delamination of the oceanic crust and existence of specific rock complexes forming non-spreading blocks